首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

Key message

A tetraploid potato population was mapped for internal heat necrosis (IHN) using the Infinium ® 8303 potato SNP array, and QTL for IHN were identified on chromosomes 1, 5, 9 and 12 that explained 28.21% of the variation for incidence and 25.3% of the variation for severity. This research represents a significant step forward in our understanding of IHN, and sets the stage for future research focused on testing the utility of these markers in additional breeding populations.

Abstract

Internal heat necrosis (IHN) is a significant non-pathogenic disorder of potato tubers and previous studies have identified AFLP markers linked to IHN susceptibility in the tetraploid, B2721 potato mapping population. B2721 consists of an IHN susceptible×resistant cross: Atlantic×B1829-5. We developed a next-generation SNP-based linkage map of this cross using the Infinium® 8303 SNP array and conducted additional QTL analyses of IHN susceptibility in the B2721 population. Using SNP dosage sensitive markers, linkage maps for both parents were simultaneously analyzed. The linkage map contained 3427 SNPs and totaled 1397.68 cM. QTL were detected for IHN on chromosomes 1, 5, 9, and 12 using LOD permutation thresholds and colocation of high LOD scores across multiple years. Genetic effects were modeled for each putative QTL. Markers associated with a QTL were regressed in models of effects for IHN incidence and severity for all years. In the full model, the SNP markers were shown to have significant effects for IHN (p < 0.0001), and explained 28.21% of the variation for incidence and 25.3% of the variation for severity. We were able to utilize SNP dosage information to identify and model the effects of putative QTL, and identify SNP loci associated with IHN resistance that need to be confirmed. This research represents a significant step forward in our understanding of IHN, and sets the stage for future research focused on testing the utility of these markers in additional breeding populations.
  相似文献   

2.
RFLP maps of potato and their alignment with the homoeologous tomato genome   总被引:10,自引:0,他引:10  
Summary An RFLP linkage map of the potato is presented which comprises 304 loci derived from 230 DNA probes and one morphological marker (tuber skin color). The self-incompatibility locus of potato was mapped to chromosome I, which is homoeologous to tomato chromosome I. By mapping chromosome-specific tomato RFLP markers in potato and, vice versa, potato markers in tomato, the different potato and tomato RFLP maps were aligned to each other and the similarity of the potato and tomato genome was confirmed. The numbers given to the 12 potato chromosomes are now in accordance with the established tomato nomenclature. Comparisons between potato RFLP maps derived from different genetic backgrounds revealed conservation of marker order but differences in chromosome and total map length. In particular, significant reduction of map length was observed in interspecific compared to intraspecific crosses. The distribution of regions with distorted segregation ratios in the genome was analyzed for four potato parents. The most prominent distortion of recombination was found to be caused by the self-incompatibility locus.  相似文献   

3.
A genetic map of potato (Solanum tuberosum) was constructed based on 293 restriction fragment length polymorphism (RFLP) markers including 31 EST markers of Arabidopsis. The in silico comparison of all marker sequences with the Arabidopsis genomic sequence resulted in 189 markers that detected in Arabidopsis 787 loci with sequence conservation. Based on conserved linkage between groups of at least three different markers on the genetic map of potato and the physical map of Arabidopsis, 90 putative syntenic blocks were identified covering 41% of the potato genetic map and 50% of the Arabidopsis physical map. The existence and distribution of syntenic blocks suggested a higher degree of structural conservation in some parts of the potato genome when compared to others. Syntenic blocks were redundant: most potato syntenic blocks were related to several Arabidopsis genome segments and vice versa. Some duplicated potato syntenic blocks correlated well with ancient segmental duplications in Arabidopsis. Syntenic relationships between different genomic segments of potato and the same segment of the Arabidopsis genome indicated that potato genome evolution included ancient intra- and interchromosomal duplications. The partial genome coveridge and the redundancy of syntenic blocks limits the use of synteny for functional comparisons between the crop species potato and the model plant Arabidopsis.  相似文献   

4.
Microsatellites, or simple sequence repeats (SSRs) are very useful molecular markers for a number of plant species. They are commonly used in cultivar identification, plant variety protection, as anchor markers in genetic mapping, and in marker-assisted breeding. Early development of SSRs was hampered by the high cost of library screening and clone sequencing. Currently, large public SSR datasets exist for many crop species, but the number of publicly available, mapped SSRs for potato is relatively low (~100). We have utilized a database mining approach to identify SSR-containing sequences in The Institute For Genomic Research Potato Gene Index database (), focusing on sequences with size polymorphisms present in this dataset. Ninety-four primer pairs flanking SSR sequences were synthesized and used to amplify potato DNA. This study rendered 61 useful SSRs that were located in pre-existing genetic maps, fingerprinted in a set of 30 cultivars from South America, North America, and Europe or a combination thereof. The high proportion of success (65%) of expressed sequence tag-derived SSRs obtained in this work validates the use of transcribed sequences as a source of markers. These markers will be useful for genetic mapping, taxonomic studies, marker-assisted selection, and cultivar identification.  相似文献   

5.
Potato is the third most important global food crop and the most widely grown noncereal crop. As a species highly amenable to cell culture, it has a long history of biotechnology applications for crop improvement. This review begins with a historical perspective on potato improvement using biotechnology encompassing pathogen elimination, wide hybridization, ploidy manipulation and applications of cell culture. We describe the past developments and new approaches for gene transfer to potato. Transformation is highly effective for adding single genes to existing elite potato clones with no, or minimal, disturbances to their genetic background and represents the only effective way to produce isogenic lines of specific genotypes/cultivars. This is virtually impossible via traditional breeding as, due to the high heterozygosity in the tetraploid potato genome, the genetic integrity of potato clones is lost upon sexual reproduction as a result of allele segregation. These genetic attributes have also provided challenges for the development of genetic maps and applications of molecular markers and genomics in potato breeding. Various molecular approaches used to characterize loci, (candidate) genes and alleles in potato, and associating phenotype with genotype are also described. The recent determination of the potato genome sequence has presented new opportunities for genomewide assays to provide tools for gene discovery and enabling the development of robustly unique marker haplotypes spanning QTL regions. The latter will be useful in introgression breeding and whole‐genome approaches such as genomic selection to improve the efficiency of selecting elite clones and enhancing genetic gain over time.  相似文献   

6.
Hawthorne DJ 《Genetics》2001,158(2):695-700
A genetic linkage map was constructed from an intraspecific cross of the Colorado potato beetle, Leptinotarsa decemlineata. This is an initial step toward mapping the loci that underlie important phenotypes associated with insect adaptation to an agroecosystem. The map was made with 172 AFLP and 10 anonymous codominant markers segregating among 74 backcross (BC(1)) individuals. Markers were mapped to 18 linkage groups and a subset of the markers with a mean intermarker distance of 11.1 cM is presented. A pyrethroid-resistance candidate gene, LdVssc1, was placed onto the map as well. The sex chromosome was identified by exploiting the XO nature of sex determination in this species using patterns of variation at LdVssc1 and the codominant markers.  相似文献   

7.
Solanum tuberosum L. DNA sequences containing simple sequence repeat (SSR) motifs were extracted from the EMBL database, cDNA and selectively enriched small-insert DNA libraries. Enrichment was achieved using either triplex affinity capture or single-strand hybridisation selection. One hundred and twelve primer pairs which successfully amplified products of the correct size from potato DNA were ultimately designed and synthesised. Ninety-eight of these revealed length polymorphisms in a panel of four diploid and two tetraploid clones, in agreement with the high information content of this class of markers which has been found in other species. All of the markers were assigned a quality score of 1–5 based on their potential usefulness. Eighty-nine loci from 65 of the primer pairs were located on two genetic linkage maps of potato by segregation analysis of the amplified alleles. Fifty-two of the SSRs were clearly single locus. The maps were aligned using 23 SSR primer pairs and 13 RFLP loci mapped in both populations. The markers described constitute a class which should replace Restriction Fragment Length Polymorphisms (RFLP) as the markers of choice for future genetic studies in potato. The sequences of the primers, together with other information on these markers are provided. Received: 12 January 1998 / Accepted: 25 March 1998  相似文献   

8.
A framework consensus map for rapeseed (Brassica napus L.) was constructed from the integration of three DH mapping populations derived from crosses between or within spring- and winter-type parents. Several sources of genetic markers were used: isozymes, RFLPs, RAPDs, and AFLPs. A total of 992 different markers were mapped to at least one population, of which 540 were included in the consensus map and 253 were common to at least two populations. Markers were distributed over 19 linkage groups, thus reflecting the basic chromosome number of rapeseed and covered 2,429 cM, which was in the mean confidence-interval estimates of genome length (2,127–2,480) cM. Markers were evenly spaced on the entire genome even if, for several linkage groups, both RAPD and AFLP markers were not uniformly distributed. In the population resulting from a cross between two spring lines, a higher recombination rate was observed and a translocation was identified. The consensus approach allowed to map a larger number of markers, to obtain a near-complete coverage of the rapeseed genome, to fill the number of gaps, and to consolidate the linkage groups of the individual maps. Received: 19 July 2000 / Accepted: 31 October 2000  相似文献   

9.
Using random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), and morphological traits, the first genetic maps for Cucurbita pepo (2n=2x=40) were constructed and compared. The two mapping populations consisted of 92 F2 individuals each. One map was developed from a cross between an oil-seed pumpkin breeding line and a zucchini accession, into which genes for resistance to Zucchini Yellow Mosaic Virus (ZYMV) from a related species, C. moschata, had been introgressed. The other map was developed from a cross between an oil-seed pumpkin and a crookneck variety. A total of 332 and 323 markers were mapped in the two populations. Markers were distributed in each map over 21 linkage groups and covered an average of 2,200 cM of the C. pepo genome. The two maps had 62 loci in common, which enabled identification of 14 homologous linkage groups. Polyacrylamide gel analyses allowed detection of a high number of markers suitable for mapping, 10% of which were co-dominant RAPD loci. In the Pumpkin-Zucchini population, bulked segregant analysis (BSA) identified seven markers less than 7 cM distant from the locus n, affecting lignification of the seed coat. One of these markers, linked to the recessive hull-less allele (AW11-420), was also found in the Pumpkin-Crookneck population, 4 cM from n. In the Pumpkin-Zucchini population, 24 RAPD markers, previously introduced into C. pepo from C. moschata, were mapped in two linkage groups (13 and 11 markers in LGpz1 and LGpz2, respectively), together with two sequence characterized amplified region (SCAR) markers linked to genes for resistance to ZYMV.  相似文献   

10.
Segregation data were obtained for 1260 potato linkage group I-specific AFLP loci from a heterozygous diploid potato population. Analytical tools that identified potential typing errors and/or inconsistencies in the data and that assembled cosegregating markers into bins were applied. Bins contain multiple-marker data sets with an identical segregation pattern, which is defined as the bin signature. The bin signatures were used to construct a skeleton bin map that was based solely on observed recombination events. Markers that did not match any of the bin signatures exactly (and that were excluded from the calculation of the skeleton bin map) were placed on the map by maximum likelihood. The resulting maternal and paternal maps consisted of 95 and 101 bins, respectively. Markers derived from EcoRI/MseI, PstI/MseI, and SacI/MseI primer combinations showed different genetic distributions. Approximately three-fourths of the markers placed into a bin were considered to fit well on the basis of an estimated residual "error rate" of 0-3%. However, twice as many PstI-based markers fit badly, suggesting that parental PstI-site methylation patterns had changed in the population. Recombination frequencies were highly variable across the map. Inert, presumably centromeric, regions caused extensive marker clustering while recombination hotspots (or regions identical by descent) resulted in empty bins, despite the level of marker saturation.  相似文献   

11.
A potato molecular-function map for carbohydrate metabolism and transport   总被引:17,自引:7,他引:10  
Molecular-linkage maps based on functional gene markers (molecular-function maps) are the prerequisite for a candidate-gene approach to identify genes responsible for quantitative traits at the molecular level. Genetic linkage between a quantitative trait locus (QTL) and a candidate-gene locus is observed when there is a causal relationship between alleles of the candidate gene and the QTL effect. Functional gene markers can also be used for marker-assisted selection and as anchors for structural and functional comparisons between distantly related plant species sharing the same metabolic pathways. A first molecular-function map with 85 loci was constructed in potato based on 69 genes. Priority was given to genes operating in carbohydrate metabolism and transport. Public databases were searched for genes of interest from potato, tomato, or other plant species. DNA sequence information was used to develop PCR-based marker assays that allowed the localization of corresponding potato genes on existing RFLP linkage maps. Comparing the molecular-function map for genes operating in carbohydrate metabolism and transport with a QTL map for tuber starch content indicates a number of putative candidate genes for this important agronomic trait. Received: 19 March 2000 / Accepted: 16 May 2000  相似文献   

12.
The ChickRH6 radiation hybrid panel has been used to construct consensus chromosome radiation hybrid (RH) maps of the chicken genome. Markers genotyped were either from throughout the genome or targeted to specific chromosomes and a large proportion (one third) of data was the result of collaborative efforts. Altogether, 2,531 markers were genotyped, allowing the construction of RH reference maps for 20 chromosomes and linkage groups for four other chromosomes. Amongst the markers, 581 belong to the framework maps, while 1,721 are on the comprehensive maps. Around 800 markers still have to be assigned to linkage groups. Our attempt to assign the supercontigs from the chrun (virtual chromosome containing all the genome sequence that could not be attributed to a chromosome) as well as EST (Expressed Sequence Tag) contigs that do not have a BLAST hit in the genome assembly led to the construction of new maps for microchromosomes either absent or for which very little data is present in the genome assembly. RH data is presented through our ChickRH webserver (http://chickrh.toulouse.inra.fr/), which is a mapping tool as well as the official repository RH database for genotypes. It also displays the RH reference maps and comparison charts with the sequence thus highlighting the possible discrepancies. Future improvements of the RH maps include complete coverage of the sequence assigned to chromosomes, further mapping of the chrun and mapping of EST contigs absent from the assembly. This will help finish the mapping of the smallest gene-rich microchromosomes.  相似文献   

13.
A physical map of the mitochondrial genome was constructed for a male-sterile tomato, MSA1, which had been generated by an asymmetric cell fusion between tomato (Lycopersicon esculentum) and wild potato (Solanum acaule). The entire genomic sequence of the MSA1 mitochondria (450 kb) was represented by five maps. Even if sequence duplications were taken into consideration, at least two linkage groups (maps 1–4 and map 5) were necessary to show the overall genome. The mitochondrial genome structure of MSA1 was also analyzed by comparing the Southern hybridization patterns of MSA1 and its parents (tomato and wild potato). The mitochondrial genome of MSA1 consists of a complex mixture of the parental genomes with at least 11 molecular recombination events. Received: 23 February 1998 / Revision received: 2 March 1998 / Accepted: 14 March 1998  相似文献   

14.
Diploid A genome species of wheat harbour immense variability for biotic stresses and productivity traits, and these could be transferred efficiently to hexaploid wheat through marker assisted selection, provided the target genes are tagged at diploid level first. Here we report an integrated molecular linkage map of A genome diploid wheat based on 93 recombinant inbred lines (RILs) derived from Triticum boeoticum × Triticum monococcum inter sub-specific cross. The parental lines were analysed with 306 simple sequence repeat (SSR) and 194 RFLP markers, including 66 bin mapped ESTs. Out of 306 SSRs tested for polymorphism, 74 (24.2%) did not show amplification (null) in both the parents. Overall, 171 (73.7%) of the 232 remaining SSR and 98 (50.5%) of the 194 RFLP markers were polymorphic. Both A and D genome specific SSR markers showed similar transferability to A genome of diploid wheat species. The 176 polymorphic markers, that were assayed on a set of 93 RILs, yielded 188 polymorphic loci and 177 of these as well as two additional morphological traits mapped on seven linkage groups with a total map length of 1,262 cM, which is longer than most of the available A genome linkage maps in diploid and hexaploid wheat. About 58 loci showed distorted segregation with majority of these mapping on chromosome 2Am. With a few exceptions, the position and order of the markers was similar to the ones in other maps of the wheat A genome. Chromosome 1Am of T. monococcum and T. boeoticum showed a small paracentric inversion relative to the A genome of hexaploid wheat. The described linkage map could be useful for gene tagging, marker assisted gene introgression from diploid into hexaploid wheat as well as for map based cloning of genes from diploid A genome species and orthologous genes from hexaploid wheat.  相似文献   

15.
A total of 355 simple sequence repeat (SSR) markers were developed, based on expressed sequence tag (EST) and bacterial artificial chromosome (BAC)-end sequence databases, and successfully used to construct an SSR-based genetic linkage map of the apple. The consensus linkage map spanned 1143 cM, with an average density of 2.5 cM per marker. Newly developed SSR markers along with 279 SSR markers previously published by the HiDRAS project were further used to integrate physical and genetic maps of the apple using a PCR-based BAC library screening approach. A total of 470 contigs were unambiguously anchored onto all 17 linkage groups of the apple genome, and 158 contigs contained two or more molecular markers. The genetically mapped contigs spanned ~421 Mb in cumulative physical length, representing 60.0% of the genome. The sizes of anchored contigs ranged from 97 kb to 4.0 Mb, with an average of 995 kb. The average physical length of anchored contigs on each linkage group was ~24.8 Mb, ranging from 17.0 Mb to 37.73 Mb. Using BAC DNA as templates, PCR screening of the BAC library amplified fragments of highly homologous sequences from homoeologous chromosomes. Upon integrating physical and genetic maps of the apple, the presence of not only homoeologous chromosome pairs, but also of multiple locus markers mapped to adjacent sites on the same chromosome was detected. These findings demonstrated the presence of both genome-wide and segmental duplications in the apple genome and provided further insights into the complex polyploid ancestral origin of the apple.  相似文献   

16.
Tozaki T  Swinburne J  Hirota K  Hasegawa T  Ishida N  Tobe T 《Gene》2007,392(1-2):181-186
Genetic maps are extremely important tools for tracing the genes that govern economically significant traits, and microsatellites are a significant component of these. In this study, we isolated 2346 novel horse microsatellites as resources for the construction of high-density horse genetic maps. Of these 2346 markers, 339 (14.5%) horse sequences showed sequence homology to DNA sequences in the human genome, demonstrating that microsatellites as type II markers are valuable resources for developing linkage maps and that they have a potential equal to that of type I markers for developing comparative maps. Of the 339 markers, 206 (60.8%) were assigned to horse chromosomes using the Animal Health Trust (AHT) full-sib reference family, and 195 (94.6%) of these localized to the expected syntenic locations on the human genome. These results confirmed the high level of accuracy of in silico mapping. Thus, the 339 markers that exhibited homology to the human genome increased the density of markers on the horse-human comparative map. The resulting comparative map will facilitate the use of horse microsatellites as genetic markers for the identification of quantitative trait loci (QTL) that have been mapped on the human genome. In addition, although the in silico and linkage mapping data did not agree for the other 11 (5.4%) of the assigned 206 markers, these may represent new putative regions of horse-human synteny.  相似文献   

17.
Genetic maps serve as frameworks for determining the genetic architecture of quantitative traits, assessing structure of a genome, as well as aid in pursuing association mapping and comparative genetic studies. In this study, a dense genetic map was constructed using a high-throughput 1,536 EST-derived SNP GoldenGate genotyping platform and a global consensus map established by combining the new genetic map with four existing reliable genetic maps of apple. The consensus map identified markers with both major and minor conflicts in positioning across all five maps. These major inconsistencies among marker positions were attributed either to structural variations within the apple genome, or among mapping populations, or genotyping technical errors. These also highlighted problems in assembly and anchorage of the reference draft apple genome sequence in regions with known segmental duplications. Markers common across all five apple genetic maps resulted in successful positioning of 2875 markers, consisting of 2033 SNPs and 843 SSRs as well as other specific markers, on the global consensus map. These markers were distributed across all 17 linkage groups, with an average of 169±33 marker per linkage group and with an average distance of 0.70±0.14 cM between markers. The total length of the consensus map was 1991.38 cM with an average length of 117.14±24.43 cM per linkage group. A total of 569 SNPs were mapped onto the genetic map, consisting of 140 recombinant individuals, from our recently developed apple Oligonucleotide pool assays (OPA). The new functional SNPs, along with the dense consensus genetic map, will be useful for high resolution QTL mapping of important traits in apple and for pursuing comparative genetic studies in Rosaceae.  相似文献   

18.
High throughput arrays for the simultaneous genotyping of thousands of single-nucleotide polymorphisms (SNPs) have made the rapid genetic characterisation of plant genomes and the development of saturated linkage maps a realistic prospect for many plant species of agronomic importance. However, the correct calling of SNP genotypes in divergent polyploid genomes using array technology can be problematic due to paralogy, and to divergence in probe sequences causing changes in probe binding efficiencies. An Illumina Infinium II whole-genome genotyping array was recently developed for the cultivated apple and used to develop a molecular linkage map for an apple rootstock progeny (M432), but a large proportion of segregating SNPs were not mapped in the progeny, due to unexpected genotype clustering patterns. To investigate the causes of this unexpected clustering we performed BLAST analysis of all probe sequences against the ‘Golden Delicious’ genome sequence and discovered evidence for paralogous annealing sites and probe sequence divergence for a high proportion of probes contained on the array. Following visual re-evaluation of the genotyping data generated for 8,788 SNPs for the M432 progeny using the array, we manually re-scored genotypes at 818 loci and mapped a further 797 markers to the M432 linkage map. The newly mapped markers included the majority of those that could not be mapped previously, as well as loci that were previously scored as monomorphic, but which segregated due to divergence leading to heterozygosity in probe annealing sites. An evaluation of the 8,788 probes in a diverse collection of Malus germplasm showed that more than half the probes returned genotype clustering patterns that were difficult or impossible to interpret reliably, highlighting implications for the use of the array in genome-wide association studies.  相似文献   

19.
A genetic linkage map of grape was constructed, utilizing 116 progeny derived from a cross of two Vitis rupestris x V. arizonica interspecific hybrids, using the pseudo-testcross strategy. A total of 475 DNA markers-410 amplified fragment length polymorphism, 24 inter-simple sequence repeat, 32 random amplified polymorphic DNA, and nine simple sequence repeat markers-were used to construct the parental maps. Markers segregating 1:1 were used to construct parental framework maps with confidence levels >90% with the Plant Genome Research Initiative mapping program. In the maternal (D8909-15) map, 105 framework markers and 55 accessory markers were ordered in 17 linkage groups (756 cM). The paternal (F8909-17) map had 111 framework markers and 33 accessory markers ordered in 19 linkage groups (1,082 cM). One hundred eighty-one markers segregating 3:1 were used to connect the two parental maps' parents. This moderately dense map will be useful for the initial mapping of genes and/or QTL for resistance to the dagger nematode, Xiphinema index, and Xylella fastidiosa, the bacterial causal agent of Pierce's disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号