首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的探讨流感病毒在雪貂组织中的分布与唾液酸受体的关系。方法用病毒分离的方法分析流感病毒H5N1(SZ406H,A/VN/1203/04),SH1N1,H3N2(Brisbane/09,HK/09)在雪貂各组织中分布,用直接免疫荧光法分析雪貂各组织的唾液酸受体的分布,并通过体外实验证实活病毒与组织上受体的结合。结果 H5N1(SZ)和H5N1(A/VN/1203/04)在雪貂的肝、脾、肺、肠中有分布,H5N1(A/VN/1203/04)在脑组织中也有分布,而SH1N1、H3N2(Brisbane/09,HK/09)只分布于肠组织。而唾液酸受体SAα2,6Gal和SAα2,3Gal的I型受体分布于脾、心、肺、肠、脑组织中,和SAα2,3Gal II型受体分布于肝、脾、心、肺、肠、脑组织。SH1N1病毒与SAα2,6Gal能结合,而H5N1与SAα2,3Gal结合。结论 H5N1能在雪貂的多器官组织组织中分布和繁殖,而H3N2和SH1N1仅能在肠组织中分布繁殖。SAα2,6Gal和SAα2,3Gal受体在雪貂多器官组织中均有表达,说明唾液酸受体是病毒进入的门户,但不是病毒分布的决定因子。  相似文献   

2.
Quail are thought to serve as intermediate hosts of influenza A viruses between aquatic birds and terrestrial birds, such as chickens, due to their high susceptibility to aquatic-bird viruses, which then adapt to replicate efficiently in their new hosts. However, does replication of aquatic-bird influenza viruses in quail similarly result in their efficient replication in humans? Using sialic acid-galactose linkage-specific lectins, we found both avian (sialic acid-α2-3-galactose [Siaα2-3Gal] linkages on sialyloligosaccharides)- and human (Siaα2-6Gal)-type receptors on the tracheal cells of quail, consistent with previous reports. We also passaged a duck H3N2 virus in quail 19 times. Sequence analysis revealed that eight mutations accumulated in hemagglutinin (HA) during these passages. Interestingly, many of the altered HA amino acids found in the adapted virus are present in human seasonal viruses, but not in duck viruses. We also found that stepwise stalk deletion of neuraminidase occurred during passages, resulting in reduced neuraminidase function. Despite some hemagglutinin mutations near the receptor binding pocket, appreciable changes in receptor specificity were not detected. However, reverse-genetics-generated viruses that possessed the hemagglutinin and neuraminidase of the quail-passaged virus replicated significantly better than the virus possessing the parent HA and neuraminidase in normal human bronchial epithelial cells, whereas no significant difference in replication between the two viruses was observed in duck cells. Further, the quail-passaged but not the original duck virus replicated in human bronchial epithelial cells. These data indicate that quail can serve as intermediate hosts for aquatic-bird influenza viruses to be transmitted to humans.  相似文献   

3.
Human influenza viruses preferentially bind to sialic acid-α2,6-galactose (SAα2,6Gal) receptors, which are predominant in human upper respiratory epithelia, whereas avian influenza viruses preferentially bind to SAα2,3Gal receptors. However, variants with amino acid substitutions around the receptor-binding sites of the hemagglutinin (HA) protein can be selected after several passages of human influenza viruses from patients’ respiratory samples in the allantoic cavities of embryonated chicken eggs. In this study, we detected an egg-adapted HA S190R mutation in the pandemic H1N1 virus 2009 (pdmH1N1), and evaluated the effects of this mutation on receptor binding affinity and pathogenicity in mice. Our results revealed that residue 190 is located within the pocket structure of the receptor binding site. The single mutation to arginine at position 190 slightly increased the binding affinity of the virus to the avian receptor and decreased its binding to the long human α2,6-linked sialic acid receptor. Our study demonstrated that the S190R mutation resulted in earlier death and higher weight loss in mice compared with the wild-type virus. Higher viral titers at 1 dpi (days post infection) and diffuse damage at 4 dpi were observed in the lung tissues of mice infected with the mutant virus.  相似文献   

4.
【背景】自2014年以来,H5N6禽流感病毒在我国家禽和活禽市场持续进化,成为人类和动物健康的重大威胁。【目的】对2017-2019年中国南方地区93株高致病性H5N6禽流感病毒的HA基因进行分子进化分析。【方法】接种9-11日龄鸡胚分离核酸检测阳性的H5N6标本,运用下一代测序平台对病毒分离物进行全基因组测序,从NCBI和GISAID数据库下载参考序列,利用BLAST、MEGA6.1及Clustal X等软件进行序列分析。【结果】2017-2019年,从189份江苏省H5亚型禽类/环境标本和1名H5N6患者咽拭子标本中共分离到43株病毒,完成了33株H5N6病毒的全基因组测序。下载网上同时期中国其他地区流行的H5N6毒株序列,对总计93株H5N6病毒的HA基因进行分子进化分析。93株H5N6病毒中有78株属于Clade 2.3.4.4h,9株病毒属于Clade 2.3.4.4e,4株H5N6病毒属于Clade 2.3.4.4b,1株属于Clade 2.3.4.4f,1株属于Clade 2.3.4.4g。所有93株病毒HA蛋白的裂解位点含有多个碱性氨基酸,表明它们都属于高致病性禽流感病毒。所有93株病毒HA蛋白的Q222和G224位氨基酸没有发生突变,保留了禽类受体α2-3半乳糖苷唾液酸(SAα2-3Gal)结合特性;158位点丧失糖基化,同时124位出现一个新的潜在糖基化位点。【结论】2017-2019年间中国南方地区H5N6病毒进化活跃,具有明显的基因多样性,需要加强对病毒分子进化的监测。  相似文献   

5.
Humans infected by the highly pathogenic H5N1 avian influenza viruses (HPAIV) present unusually high concentrations in serum of proinflammatory cytokines and chemokines, which are believed to contribute to the high pathogenicity of these viruses. The hemagglutinins (HAs) of avian influenza viruses preferentially bind to sialic acids attached through α2,3 linkages (SAα2,3) to the terminal galactose of carbohydrates on the host cell surface, while the HAs from human strains bind to α2,6-linked SA (SAα2,6). To evaluate the role of the viral receptor specificity in promoting innate immune responses in humans, we generated recombinant influenza viruses, one bearing the HA and neuraminidase (NA) genes from the A/Vietnam/1203/2004 H5N1 HPAIV in an influenza A/Puerto Rico/8/1934 (A/PR/8/34) backbone with specificity for SAα2,3 and the other a mutant virus (with Q226L and G228S in the HA) with preferential receptor specificity for SAα2,6. Viruses with preferential affinity for SAα2,3 induced higher levels of proinflammatory cytokines and interferon (IFN)-inducible genes in primary human dendritic cells (DCs) than viruses with SAα2,6 binding specificity, and these differences were independent of viral replication, as shown by infections with UV-inactivated viruses. Moreover, human primary macrophages and respiratory epithelial cells showed higher expression of proinflammatory genes after infection with the virus with SAα2,3 affinity than after infection with the virus with SAα2,6 affinity. These data indicate that binding to SAα2,3 by H5N1 HPAIV may be sensed by human cells differently than binding to SAα2,6, inducing an exacerbated innate proinflammatory response in infected individuals.  相似文献   

6.
Avian influenza viruses of subtype H5N1 circulating in animals continue to pose threats to human health. The binding preference of the viral surface protein hemagglutinin (HA) to sialosaccharides of receptors is an important area for understanding mutations in the receptor binding site that could be the cause for avian-to-human transmission. In the present work, we studied the effect of two receptor binding site mutations, S221P singly and in combination with another mutation K216E in the HA protein of influenza A H5N1 viruses. Docking of sialic acid ligands corresponding to both avian and human receptors and molecular dynamics simulations of the complexes for wild and mutant strains of H5N1 viruses were carried out. The H5N1 strain possessing the S221P mutation indicated decreased binding to α2,3-linked sialic acids (avian receptor, SAα2,3Gal) when compared to the binding of the wild-type strain that did not possess the HA-221 mutation. The binding to α2,6-linked sialic acids (human receptor, SAα2,6Gal) was found to be comparable, indicating that the mutant strain shows limited dual receptor specificity. On the other hand, the S221P mutation in synergism with the K216E mutation in the binding site, resulted in increased binding affinity for SAα2,6Gal when compared to SAα2,3Gal, indicative of enhanced binding to human receptors. The in-depth study of the molecular interactions in the docked complexes could explain how co-occurring mutations in the HA viral protein can aid in providing fitness advantage to the virus, in the context of host receptor specificity in emerging variants of H5N1 influenza viruses.  相似文献   

7.
Avian influenza viruses (AIVs) recognize sialic acid linked α2,3 to galactose (SAα2,3Gal) glycans as receptors. In this study, the interactions between hemagglutinins (HAs) of AIVs and sulfated SAα2,3Gal glycans were analyzed to clarify the molecular basis of interspecies transmission of AIVs from ducks to chickens. It was revealed that E190V and N192D substitutions of the HA increased the recovery of viruses derived from an H6 duck virus isolate, A/duck/Hong Kong/960/1980 (H6N2), in chickens. Recombinant HAs from an H6 chicken virus, A/chicken/Tainan/V156/1999 (H6N1), bound to sulfated SAα2,3Gal glycans, whereas the HAs from an H6 duck virus did not. Binding preference of mutant HAs revealed that an E190V substitution is critical for the recognition of sulfated SAα2,3Gal glycans. These results suggest that the binding of the HA from H6 AIVs to sulfated SAα2,3Gal glycans explains a part of mechanisms of interspecies transmission of AIVs from ducks to chickens.  相似文献   

8.
In 1997, 18 confirmed cases of human influenza arising from multiple independent transmissions of H5N1 viruses from infected chickens were reported from Hong Kong. To identify possible phenotypic changes in the hemagglutinin (HA) and neuraminidase (NA) of the H5 viruses during interspecies transfer, we compared the receptor-binding properties and NA activities of the human and chicken H5N1 isolates from Hong Kong and of H5N3 and H5N1 viruses from wild aquatic birds. All H5N1 viruses, including the human isolate bound to Sia2-3Gal-containing receptors but not to Sia2-6Gal-containing receptors. This finding formally demonstrates for the first time that receptor specificity of avian influenza viruses may not restrict initial avian-to-human transmission. The H5N1 chicken viruses differed from H5 viruses of wild aquatic birds by a 19-amino-acid deletion in the stalk of the NA and the presence of a carbohydrate at the globular head of the HA. We found that a deletion in the NA decreased its ability to release the virus from cells, whereas carbohydrate at the HA head decreased the affinity of the virus for cell receptors. Comparison of amino acid sequences from GenBank of the HAs and NAs from different avian species revealed that additional glycosylation of the HA and a shortened NA stalk are characteristic features of the H5 and H7 chicken viruses. This finding indicates that changes in both HA and NA may be required for the adaptation of influenza viruses from wild aquatic birds to domestic chickens and raises the possibility that chickens may be a possible intermediate host in zoonotic transmission.  相似文献   

9.
A cryptically I-active sialylglycoprotein (glycoprotein 2) isolated from bovine erythrocyte membranes as Sendai virus receptor (Suzuki, Y., Suzuki, T. and Matsumoto, M. (1983) J. Biochem. 93, 1621-1633) contains N-glycolylneuraminic acid (NeuGc) as its predominate sialic acid and exhibits poor receptor activity for a variety of influenza viruses. Enzymatic modification of asialoglycoprotein-2 to contain N-acetylneuraminic acid (NeuAc) in the NeuAc alpha 2-3Gal and NeuAc alpha 2-6Gal sequences using specific sialyltransferase resulted in the appearance of receptor activity toward human influenza viruses A and B. The biological responsiveness chicken erythrocytes treated with sialidase and then reconstituted with derivatized glycoprotein 2 showed considerable recovery to influenza virus hemagglutinin-mediated agglutination, low-pH fusion and hemolysis. Specific hemagglutination inhibition activity of derivatized glycoprotein 2 was 5-16-times higher than that of human glycophorin. A/PR/8/34 (H1N1) virus preferentially recognized derivatized glycoprotein 2 containing NeuAc alpha 2-3Gal sequence over that containing NeuAc alpha 2-6Gal while the specificity of A/Aichi/2/68 (H3N2) for the sialyl linkages was reversed. B/Lee virus recognized both sequences almost equally. The biological responsiveness to the viruses of the erythrocytes labeled with the derivatized glycoprotein 2 containing NeuGc was considerably lower than that of derivatized glycoprotein 2 containing NeuAc. The results demonstrate that the hemagglutinins of human isolates of influenza viruses A and B differ in the recognition of microdomains (NeuAc, NeuGc) of the receptors for binding and fusion activities in viral penetration and the sequence to which sialic acid (SA) is attached (SA alpha 2-3Gal, SA alpha 2-6Gal). Inner I-active neolacto-series type II sugar chains may be important in revealing the receptor activity toward the hemagglutinin of both human influenza viruses A and B.  相似文献   

10.
Influenza virus neuraminidase inhibitors (NAIs), currently used as anti-influenza drugs, can lead to the appearance of drug-resistant variants. Resistance to NAIs appears due to mutations in the active site of the neuraminidase (NA) molecule that decrease the NA enzymatic activity and sometimes in the hemagglutinin (HA) that decrease its affinity for cell receptors and, therefore, reduce the requirement for NA activity in releasing mature virions from infected cells. Using a set of sialo-oligosaccharides, we evaluated changes in the receptor-binding specificity of the HA and substrate specificity of the NA of influenza B viruses that had acquired resistance to NAIs. The oligosaccharide specificity of two pairs of field influenza B viruses, namely: i) B/Memphis/20/96 and its NAI-resistant variant, B/Memphis/20-152K/96, containing mutation R152K in the NA and 5 amino acid substitutions in the HA1, and ii) B/Hong Kong/45/2005 and its NAI-resistant variant B/Hong Kong/36/2005, containing a single R371K mutation in the NA, was evaluated. Wild type viruses bound strictly to a “human type” receptor, α2-6-sialo-oligosaccharide 6`SLN, but desialylated it is approximately 8 times less efficiently than the α2-3 sialosaccharides. Both drug-resistant viruses demonstrated the ability to bind to “avian type” receptors, α2-3 sialo-oligosaccharides (such as 3`SLN), whereas their affinity for 6`SLN was noticeably reduced in comparison with corresponding wild type viruses. Thus, the development of the NAI resistance in the studied influenza B viruses was accompanied by a readjustment of HA-NA oligosaccharide specificities.  相似文献   

11.
The 2009 H1N1 influenza pandemic is the first human pandemic in decades and was of swine origin. Although swine are believed to be an intermediate host in the emergence of new human influenza viruses, there is still little known about the host barriers that keep swine influenza viruses from entering the human population. We surveyed swine progenitors and human viruses from the 2009 pandemic and measured the activities of the hemagglutinin (HA) and neuraminidase (NA), which are the two viral surface proteins that interact with host glycan receptors. A functional balance of these two activities (HA binding and NA cleavage) is found in human viruses but not in the swine progenitors. The human 2009 H1N1 pandemic virus exhibited both low HA avidity for glycan receptors as a result of mutations near the receptor binding site and weak NA enzymatic activity. Thus, a functional match between the hemagglutinin and neuraminidase appears to be necessary for efficient transmission between humans and may be an indicator of the pandemic potential of zoonotic viruses.  相似文献   

12.
The 1957 human pandemic strain of influenza A virus contained an avian virus hemagglutinin (HA) and neuraminidase (NA), both of which acquired specificity for the human receptor, N-acetylneuraminic acid linked to galactose of cellular glycoconjugates via an alpha2-6 bond (NeuAcalpha2-6Gal). Although the NA retained considerable specificity for NeuAcalpha2-3Gal, its original substrate in ducks, it lost the ability to support viral growth in the duck intestine, suggesting a growth-restrictive change other than a shift in substrate specificity. To test this possibility, we generated a panel of reassortant viruses that expressed the NA genes of human H2N2 viruses isolated from 1957 to 1968 with all other genes from the avian virus A/duck/Hong Kong/278/78 (H9N2). Only the NA of A/Singapore/1/57 supported efficient viral growth in the intestines of orally inoculated ducks. The growth-supporting capacity of the NA correlated with a high level of enzymatic activity, comparable to that found to be associated with avian virus NAs. The specific activities of the A/Ann Arbor/6/60 and A/England/12/62 NAs, which showed greatly restricted abilities to support viral growth in ducks, were only 8 and 5%, respectively, of the NA specific activity for A/Singapore/1/57. Using chimeric constructs based on A/Singapore/1/57 and A/England/12/62 NAs, we localized the determinants of high specific NA activity to a region containing six amino acid substitutions in A/England/12/62: Ser331-->Arg, Asp339-->Asn, Asn367-->Ser, Ser370-->Leu, Asn400-->Ser, and Pro431-->Glu. Five of these six residues (excluding Asn400) were required and sufficient for the full specific activity of the A/Singapore/1/57 NA. Thus, in addition to a change in substrate specificity, a reduction in high specific activity may be required for the adaptation of avian virus NAs to growth in humans. This change is likely needed to maintain an optimal balance between NA activity and the lower affinity shown by human virus HAs for their cellular receptor.  相似文献   

13.
Human and animal influenza A isolates of the H3 serotype preferentially bind SA alpha 2,6Gal or SA alpha 2,3Gal linkages (where SA represents sialic acid), respectively, on cell-surface sialyloligosaccharides. Previously, we have demonstrated selection of SA alpha 2,3Gal-specific receptor variants of several human viruses which differed from the parent viruses by a single amino acid at residue 226 of the hemagglutinin which is located in the receptor binding pocket (Rogers, G. N., Paulson, J.C., Daniels, R.S., Skehel, J.J., Wilson, I.A., and Wiley, D.C. (1983) Nature 304, 76-78). In this report, the selection in the reverse direction was accomplished starting with a SA alpha 2,3Gal-specific avian virus, A/duck/Ukraine/1/63 (H3N7), yielding SA alpha 2,6Gal-specific variants that exhibit the receptor binding properties characteristic of the human isolates. Selection was again mediated at residue 226 of the hemagglutinin, in this case changing from Gln in the parent virus to Leu in the variants. Although the SA alpha 2,6Gal-specific avian virus variants were stable to passage in MDCK cells, they exhibited dramatic reversion to the SA alpha 2,3Gal-specific phenotype of the parent virus during a single passage in chicken embryos. This was in contrast to the SA alpha 2,6Gal-specific human virus isolates which were stable to passage in both hosts. The reversion of the avian virus variants in eggs provides compelling evidence for host-mediated selection of influenza virus receptor variants.  相似文献   

14.
人呼吸道禽流感病毒受体的分布趋势   总被引:7,自引:1,他引:6  
禽类流感病毒和人类流感病毒具有很强的受体识别特异性,分别与唾液酸α-2,3Gal和α-2,6Gal受体分子结合而感染各自的宿主细胞.这种受体结合特异性是流感病毒在禽类和人类之间跨种属传递的主要障碍.应用凝集素组织化学染色技术,探讨人呼吸道各解剖学部位流感病毒唾液酸受体的分布特征.结果显示,唾液酸α-2,3Gal受体, 即禽类流感受体,主要分布在下呼吸道的呼吸部即呼吸细支气管和肺泡, 而在主气管、支气管和细支气管仅少量分布.相反,人类流感病毒受体,唾液酸α-2,6Gal受体在气管、支气管呈高密度分布,随着支气管分级逐渐降低分布减少,至肺泡分布最少.但比较人呼吸道发育成熟过程中,唾液酸α-2,3Gal和α-2,6Gal受体的表达,未发现明显差别.禽流感H5N1病毒体外感染人呼吸道组织试验结果表明,肺泡上皮较支气管和气管上皮易感染,与唾液酸α-2,3Gal受体分布特点相符合.结果提示,人呼吸道可被禽流感病毒感染,目前H5N1病毒极少发生人传人的特点,可能与个体间上呼吸道唾液酸α-2,3Gal受体表达差异有关.  相似文献   

15.
Influenza A viruses possess two virion surface proteins, hemagglutinin (HA) and neuraminidase (NA). The HA binds to sialyloligosaccharide viral receptors, while the NA removes sialic acids from the host cell and viral sialyloligosaccarides. Alterations of the HA occur during adaptation of influenza viruses to new host species, as in the 1957 and 1968 influenza pandemics. To gain a better understanding of the contributions of the HA and possibly the NA to this process, we generated cell lines expressing reduced levels of the influenza virus receptor determinant, sialic acid, by selecting Madin-Darby canine kidney cells resistant to a lectin specific for sialic acid linked to galactose by alpha(2-3) or alpha(2-6) linkages. One of these cell lines had less than 1/10 as much N-acetylneuraminic acid as its parent cell line. When serially passaged in this cell line, human H3N2 viruses lost sialidase activity due to a large internal deletion in the NA gene, without alteration of the HA gene. These findings indicate that NA mutations can contribute to the adaptation of influenza A virus to new host environments and hence may play a role in the transmission of virus across species.  相似文献   

16.
Huang IC  Li W  Sui J  Marasco W  Choe H  Farzan M 《Journal of virology》2008,82(10):4834-4843
Enveloped viruses use multiple mechanisms to inhibit infection of a target cell by more than one virion. These mechanisms may be of particular importance for the evolution of segmented viruses, because superinfection exclusion may limit the frequency of reassortment of viral genes. Here, we show that cellular expression of influenza A virus neuraminidase (NA), but not hemagglutinin (HA) or the M2 proton pump, inhibits entry of HA-pseudotyped retroviruses. Cells infected with H1N1 or H3N2 influenza A virus were similarly refractory to HA-mediated infection and to superinfection with a second influenza A virus. Both HA-mediated entry and viral superinfection were rescued by the neuraminidase inhibitors oseltamivir carboxylate and zanamivir. These inhibitors also prevented the removal of alpha-2,3- and alpha-2,6-linked sialic acid observed in cells expressing NA or infected with influenza A viruses. Our data indicate that NA alone among viral proteins limits influenza A virus superinfection.  相似文献   

17.
A universal microchip was developed for genotyping Influenza A viruses. It contains two sets of oligonucleotide probes allowing viruses to be classified by the subtypes of hemagglutinin (H1-H13, H15, H16) and neuraminidase (N1-N9). Additional sets of probes are used to detect H1N1 swine influenza viruses. Selection of probes was done in two steps. Initially, amino acid sequences specific to each subtype were identified, and then the most specific and representative oligonucleotide probes were selected. Overall, between 19 and 24 probes were used to identify each subtype of hemagglutinin (HA) and neuraminidase (NA). Genotyping included preparation of fluorescently labeled PCR amplicons of influenza virus cDNA and their hybridization to microarrays of specific oligonucleotide probes. Out of 40 samples tested, 36 unambiguously identified HA and NA subtypes of Influenza A virus.  相似文献   

18.
Direct labeling of virus particles is a powerful tool for the visualization of virus–cell interaction events. However, this technique involves the chemical modification of viral proteins that affects viral biological properties. Here we describe an alternative approach of influenza virus labeling that utilizes Function-Spacer-Lipid(FSL) constructs that can be gently inserted into the virus membrane. We assessed whether labeling with fluorescent(fluo-Ad-DOPE) or biotin-labeled(biot-CMG2-DOPE) probes has any deleterious effect on influenza virus hemagglutinin(HA) receptor specificity, neuraminidase(NA) activity, or replicative ability in vitro. Our data clearly show that neither construct significantly affected influenza virus infectivity or viral affinity to sialyl receptors. Neither construct influenced the NA activities of the influenza viruses tested, except the A/Puerto Rico/8/34(H1N1) strain. Our data indicate that lipid labeling provides a powerful tool to analyze influenza virus infection in vitro.  相似文献   

19.
Cleavage of the hemagglutinin (HA) molecule by proteases is a prerequisite for the infectivity of influenza A viruses. Plasminogen binds to the viral glycoprotein neuraminidase (NA), and NA-bound plasminogen is activated to plasmin, which cleaves the HA of influenza A/WSN/33 (WSN) (H1N1) virus. Here we present assays for detecting functional plasminogen binding to the influenza virus NA.  相似文献   

20.
The hemagglutinin (HA) of fowl plague virus A/FPV/Rostock/34 (H7N1) carries two N-linked oligosaccharides attached to Asn123 and Asn149 in close vicinity to the receptor-binding pocket. In previous studies in which HA mutants lacking either one (mutants G1 and G2) or both (mutant G1,2) glycosylation sites had been expressed from a simian virus 40 vector, we showed that these glycans regulate receptor binding affinity (M. Ohuchi, R. Ohuchi, A. Feldmann, and H. D. Klenk, J. Virol. 71:8377-8384, 1997). We have now investigated the effect of these mutations on virus growth using recombinant viruses generated by an RNA polymerase I-based reverse genetics system. Two reassortants of influenza virus strain A/WSN/33 were used as helper viruses to obtain two series of HA mutant viruses differing only in the neuraminidase (NA). Studies using N1 NA viruses revealed that loss of the oligosaccharide from Asn149 (mutant G2) or loss of both oligosaccharides (mutant G1,2) has a pronounced effect on virus growth in MDCK cells. Growth of virus lacking both oligosaccharides from infected cells was retarded, and virus yields in the medium were decreased about 20-fold. Likewise, there was a reduction in plaque size that was distinct with G1,2 and less pronounced with G2. These effects could be attributed to a highly impaired release of mutant progeny viruses from host cells. In contrast, with recombinant viruses containing N2 NA, these restrictions were much less apparent. N1 recombinants showed lower neuraminidase activity than N2 recombinants, indicating that N2 NA is able to partly overrule the high-affinity binding of mutant HA to the receptor. These results demonstrate that N-glycans flanking the receptor-binding site of the HA molecule are potent regulators of influenza virus growth, with the glycan at Asn149 being dominant and that at Asn123 being less effective. In addition, we show here that HA and NA activities need to be highly balanced in order to allow productive influenza virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号