首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Schizophrenia is a severe neuropsychiatric disorder that is hypothesized to result from disturbances in early brain development. There is mounting evidence to support a role for developmentally regulated epigenetic variation in the molecular etiology of the disorder. Here, we describe a systematic study of schizophrenia-associated methylomic variation in the adult brain and its relationship to changes in DNA methylation across human fetal brain development.

Results

We profile methylomic variation in matched prefrontal cortex and cerebellum brain tissue from schizophrenia patients and controls, identifying disease-associated differential DNA methylation at multiple loci, particularly in the prefrontal cortex, and confirming these differences in an independent set of adult brain samples. Our data reveal discrete modules of co-methylated loci associated with schizophrenia that are enriched for genes involved in neurodevelopmental processes and include loci implicated by genetic studies of the disorder. Methylomic data from human fetal cortex samples, spanning 23 to 184 days post-conception, indicates that schizophrenia-associated differentially methylated positions are significantly enriched for loci at which DNA methylation is dynamically altered during human fetal brain development.

Conclusions

Our data support the hypothesis that schizophrenia has an important early neurodevelopmental component, and suggest that epigenetic mechanisms may mediate these effects.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0483-2) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
4.

Background

Whether schizophrenia and bipolar disorder are the clinical outcomes of discrete or shared causative processes is much debated in psychiatry. Several studies have demonstrated anomalous structural and functional superior temporal gyrus (STG) symmetries in schizophrenia. We examined bipolar patients to determine if they also have altered STG asymmetry.

Methods

Whole-head magnetoencephalography (MEG) recordings of auditory evoked fields were obtained for 20 subjects with schizophrenia, 20 with bipolar disorder, and 20 control subjects. Neural generators of the M100 auditory response were modeled using a single equivalent current dipole for each hemisphere. The source location of the M100 response was used as a measure of functional STG asymmetry.

Results

Control subjects showed the typical M100 asymmetrical pattern with more anterior sources in the right STG. In contrast, both schizophrenia and bipolar disorder patients displayed a symmetrical M100 source pattern. There was no significant difference in the M100 latency and strength in bilateral hemispheres within three groups.

Conclusions

Our results indicate that disturbed asymmetry of temporal lobe function may reflect a common deviance present in schizophrenia and bipolar disorder, suggesting the two disorders might share etiological and pathophysiological factors.  相似文献   

5.

Background

Schizophrenia is a severe disabling brain disease affecting about 1% of the population. Individual microRNAs (miRNAs) affect moderate downregulation of gene expression. In addition, components required for miRNA processing and/or function have also been implicated in X-linked mental retardation, neurological and neoplastic diseases, pointing to the wide ranging involvement of miRNAs in disease.

Methods and Findings

To explore the role of miRNAs in schizophrenia, 59 microRNA genes on the X-chromosome were amplified and sequenced in males with (193) and without (191) schizophrenia spectrum disorders to test the hypothesis that ultra-rare mutations in microRNA collectively contribute to the risk of schizophrenia. Here we provide the first association of microRNA gene dysfunction with schizophrenia. Eight ultra-rare variants in the precursor or mature miRNA were identified in eight distinct miRNA genes in 4% of analyzed males with schizophrenia. One ultra-rare variant was identified in a control sample (with a history of depression) (8/193 versus 1/191, p = 0.02 by one-sided Fisher''s exact test, odds ratio = 8.2). These variants were not found in an additional 7,197 control X-chromosomes.

Conclusions

Functional analyses of ectopically expressed copies of the variant miRNA precursors demonstrate loss of function, gain of function or altered expression levels. While confirmation is required, this study suggests that microRNA mutations can contribute to schizophrenia.  相似文献   

6.
7.

Background

Although structural magnetic resonance imaging (MRI) studies have repeatedly demonstrated regional brain structural abnormalities in patients with schizophrenia, relatively few MRI-based studies have attempted to distinguish between patients with first-episode schizophrenia and healthy controls.

Method

Three-dimensional MR images were acquired from 52 (29 males, 23 females) first-episode schizophrenia patients and 40 (22 males, 18 females) healthy subjects. Multiple brain measures (regional brain volume and cortical thickness) were calculated by a fully automated procedure and were used for group comparison and classification by linear discriminant function analysis.

Results

Schizophrenia patients showed gray matter volume reductions and cortical thinning in various brain regions predominantly in prefrontal and temporal cortices compared with controls. The classifiers obtained from 66 subjects of the first group successfully assigned 26 subjects of the second group with accuracy above 80%.

Conclusion

Our results showed that combinations of automated brain measures successfully differentiated first-episode schizophrenia patients from healthy controls. Such neuroimaging approaches may provide objective biological information adjunct to clinical diagnosis of early schizophrenia.  相似文献   

8.

Background

The PTPRA gene, which encodes the protein RPTP-α, is critical to neurodevelopment. Previous linkage studies, genome-wide association studies, controlled expression analyses and animal models support an association with both schizophrenia and autism spectrum disorders, both of which share a substantial portion of genetic risks.

Methods

We sequenced the protein-encoding areas of the PTPRA gene for single nucleotide polymorphisms or small insertions/deletions (InDel) in 382 schizophrenia patients. To validate their association with the disorders, rare (minor allele frequency <1%), missense mutations as well as one InDel in the 3′UTR region were then genotyped in another independent sample set comprising 944 schizophrenia patients, 336 autism spectrum disorders patients, and 912 healthy controls.

Results

Eight rare mutations, including 3 novel variants, were identified during the mutation-screening phase. In the following association analysis, L59P, one of the two missense mutations, was only observed among patients of schizophrenia. Additionally, a novel duplication in the 3′UTR region, 174620_174623dupTGAT, was predicted to be located within a Musashi Binding Element.

Major Conclusions

No evidence was seen for the association of rare, missense mutations in the PTPRA gene with schizophrenia or autism spectrum disorders; however, we did find some rare variants with possibly damaging effects that may increase the susceptibility of carriers to the disorders.  相似文献   

9.

Background

With a higher throughput and lower cost in sequencing, second generation sequencing technology has immense potential for translation into clinical practice and in the realization of pharmacogenomics based patient care. The systematic analysis of whole genome sequences to assess patient to patient variability in pharmacokinetics and pharmacodynamics responses towards drugs would be the next step in future medicine in line with the vision of personalizing medicine.

Methods

Genomic DNA obtained from a 55 years old, self-declared healthy, anonymous male of Malay descent was sequenced. The subject''s mother died of lung cancer and the father had a history of schizophrenia and deceased at the age of 65 years old. A systematic, intuitive computational workflow/pipeline integrating custom algorithm in tandem with large datasets of variant annotations and gene functions for genetic variations with pharmacogenomics impact was developed. A comprehensive pathway map of drug transport, metabolism and action was used as a template to map non-synonymous variations with potential functional consequences.

Principal Findings

Over 3 million known variations and 100,898 novel variations in the Malay genome were identified. Further in-depth pharmacogenetics analysis revealed a total of 607 unique variants in 563 proteins, with the eventual identification of 4 drug transport genes, 2 drug metabolizing enzyme genes and 33 target genes harboring deleterious SNVs involved in pharmacological pathways, which could have a potential role in clinical settings.

Conclusions

The current study successfully unravels the potential of personal genome sequencing in understanding the functionally relevant variations with potential influence on drug transport, metabolism and differential therapeutic outcomes. These will be essential for realizing personalized medicine through the use of comprehensive computational pipeline for systematic data mining and analysis.  相似文献   

10.

Background

Analysis of targeted amplicon sequencing data presents some unique challenges in comparison to the analysis of random fragment sequencing data. Whereas reads from randomly fragmented DNA have arbitrary start positions, the reads from amplicon sequencing have fixed start positions that coincide with the amplicon boundaries. As a result, any variants near the amplicon boundaries can cause misalignments of multiple reads that can ultimately lead to false-positive or false-negative variant calls.

Results

We show that amplicon boundaries are variant calling blind spots where the variant calls are highly inaccurate. We propose that an effective strategy to avoid these blind spots is to incorporate the primer bases in obtaining read alignments and post-processing of the alignments, thereby effectively moving these blind spots into the primer binding regions (which are not used for variant calling). Targeted sequencing data analysis pipelines can provide better variant calling accuracy when primer bases are retained and sequenced.

Conclusions

Read bases beyond the variant site are necessary for analysis of amplicon sequencing data. Enzymatic primer digestion, if used in the target enrichment process, should leave at least a few primer bases to ensure that these bases are available during data analysis. The primer bases should only be removed immediately before the variant calling step to ensure that the variants can be called irrespective of where they occur within the amplicon insert region.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1073) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background

The central paradox of schizophrenia genetics is that susceptibility genes are preserved in the human gene-pool against a strong negative selection pressure. Substantial evidence of epidemiology suggests that nuclear susceptibility genes, if present, should be sustained by mutation-selection balance without heterozygote advantage. Therefore, putative nuclear susceptibility genes for schizophrenia should meet special conditions for the persistence of the disease as well as the condition of bearing a positive association with the disease.

Methodology/Principal Findings

We deduced two criteria that every nuclear susceptibility gene for schizophrenia should fulfill for the persistence of the disease under general assumptions of the multifactorial threshold model. The first criterion demands an upper limit of the case-control difference of the allele frequencies, which is determined by the mutation rate at the locus, and the prevalence and the selection coefficient of the disease. The second criterion demands an upper limit of odds ratio for a given allele frequency in the unaffected population. When we examined the top 30 genes at SZGene and the recently reported common variants on chromosome 6p with the criteria using the epidemiological data in a large-sampled Finnish cohort study, it was suggested that most of these are unlikely to confer susceptibility to schizophrenia. The criteria predict that the common disease/common variant hypothesis is unlikely to fit schizophrenia and that nuclear susceptibility genes of moderate effects for schizophrenia, if present, are limited to ‘rare variants’, ‘very common variants’, or variants with exceptionally high mutation rates.

Conclusions/Significance

If we assume the nuclear DNA model for schizophrenia, it should have many susceptibility genes of exceptionally high mutation rates; alternatively, it should have many disease-associated resistance genes of standard mutation rates on different chromosomes. On the other hand, the epidemiological data show that pathogenic genes, if located in the mitochondrial DNA, could persist through sex-related mechanisms.  相似文献   

12.

Background

Human leukocyte antigen (HLA) genes are critical genes involved in important biomedical aspects, including organ transplantation, autoimmune diseases and infectious diseases. The gene family contains the most polymorphic genes in humans and the difference between two alleles is only a single base pair substitution in many cases. The next generation sequencing (NGS) technologies could be used for high throughput HLA typing but in silico methods are still needed to correctly assign the alleles of a sample. Computer scientists have developed such methods for various NGS platforms, such as Illumina, Roche 454 and Ion Torrent, based on the characteristics of the reads they generate. However, the method for PacBio reads was less addressed, probably owing to its high error rates. The PacBio system has the longest read length among available NGS platforms, and therefore is the only platform capable of having exon 2 and exon 3 of HLA genes on the same read to unequivocally solve the ambiguity problem caused by the “phasing” issue.

Results

We proposed a new method BayesTyping1 to assign HLA alleles for PacBio circular consensus sequencing reads using Bayes’ theorem. The method was applied to simulated data of the three loci HLA-A, HLA-B and HLA-DRB1. The experimental results showed its capability to tolerate the disturbance of sequencing errors and external noise reads.

Conclusions

The BayesTyping1 method could overcome the problems of HLA typing using PacBio reads, which mostly arise from sequencing errors of PacBio reads and the divergence of HLA genes, to some extent.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-296) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

RNA sequencing (RNA-seq) is the current gold-standard method to quantify gene expression for expression quantitative trait locus (eQTL) studies. However, a potential caveat in these studies is that RNA-seq reads carrying the non-reference allele of variant loci can have lower probability to map correctly to the reference genome, which could bias gene quantifications and cause false positive eQTL associations. In this study, we analyze the effect of this allelic mapping bias in eQTL discovery.

Results

We simulate RNA-seq read mapping over 9.5 M common SNPs and indels, with 15.6% of variants showing biased mapping rate for reference versus non-reference reads. However, removing potentially biased RNA-seq reads from an eQTL dataset of 185 individuals has a very small effect on gene and exon quantifications and eQTL discovery. We detect only a handful of likely false positive eQTLs, and overall eQTL SNPs show no significant enrichment for high mapping bias.

Conclusion

Our results suggest that RNA-seq quantifications are generally robust against allelic mapping bias, and that this does not have a severe effect on eQTL discovery. Nevertheless, we provide our catalog of putatively biased loci to allow better controlling for mapping bias to obtain more accurate results in future RNA-seq studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0467-2) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.

Background

The classical candidate-gene approach has failed to identify novel breast cancer susceptibility genes. Nowadays, massive parallel sequencing technology allows the development of studies unaffordable a few years ago. However, analysis protocols are not yet sufficiently developed to extract all information from the huge amount of data obtained.

Methodology/Principal Findings

In this study, we performed high throughput sequencing in two regions located on chromosomes 3 and 6, recently identified by linkage studies by our group as candidate regions for harbouring breast cancer susceptibility genes. In order to enrich for the coding regions of all described genes located in both candidate regions, a hybrid-selection method on tiling microarrays was performed.

Conclusions/Significance

We developed an analysis pipeline based on SOAP aligner to identify candidate variants with a high real positive confirmation rate (0.89), with which we identified eight variants considered candidates for functional studies. The results suggest that the present strategy might be a valid second step for identifying high penetrance genes.  相似文献   

16.
17.
18.
Poot M  Badea A  Williams RW  Kas MJ 《PloS one》2011,6(5):e18612

Background

Understanding complex networks that modulate development in humans is hampered by genetic and phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in highly diverse mouse genetic reference panels in which genetic and environmental factors can be tightly controlled. The aim of our study is to test a cross-species genetic mapping strategy, which compares data of gene mapping in human patients with functional data obtained by QTL mapping in recombinant inbred mouse strains in order to prioritize human disease candidate genes.

Methodology

We exploit evolutionary conservation of developmental phenotypes to discover gene variants that influence brain development in humans. We studied corpus callosum volume in a recombinant inbred mouse panel (C57BL/6J×DBA/2J, BXD strains) using high-field strength MRI technology. We aligned mouse mapping results for this neuro-anatomical phenotype with genetic data from patients with abnormal corpus callosum (ACC) development.

Principal Findings

From the 61 syndromes which involve an ACC, 51 human candidate genes have been identified. Through interval mapping, we identified a single significant QTL on mouse chromosome 7 for corpus callosum volume with a QTL peak located between 25.5 and 26.7 Mb. Comparing the genes in this mouse QTL region with those associated with human syndromes (involving ACC) and those covered by copy number variations (CNV) yielded a single overlap, namely HNRPU in humans and Hnrpul1 in mice. Further analysis of corpus callosum volume in BXD strains revealed that the corpus callosum was significantly larger in BXD mice with a B genotype at the Hnrpul1 locus than in BXD mice with a D genotype at Hnrpul1 (F = 22.48, p<9.87*10−5).

Conclusion

This approach that exploits highly diverse mouse strains provides an efficient and effective translational bridge to study the etiology of human developmental disorders, such as autism and schizophrenia.  相似文献   

19.
20.

Background

One aspect in which RNA sequencing is more valuable than microarray-based methods is the ability to examine the allelic imbalance of the expression of a gene. This process is often a complex task that entails quality control, alignment, and the counting of reads over heterozygous single-nucleotide polymorphisms. Allelic imbalance analysis is subject to technical biases, due to differences in the sequences of the measured alleles. Flexible bioinformatics tools are needed to ease the workflow while retaining as much RNA sequencing information as possible throughout the analysis to detect and address the possible biases.

Results

We present AllelicImblance, a software program that is designed to detect, manage, and visualize allelic imbalances comprehensively. The purpose of this software is to allow users to pose genetic questions in any RNA sequencing experiment quickly, enhancing the general utility of RNA sequencing. The visualization features can reveal notable, non-trivial allelic imbalance behavior over specific regions, such as exons.

Conclusions

The software provides a complete framework to perform allelic imbalance analyses of aligned RNA sequencing data, from detection to visualization, within the robust and versatile management class, ASEset.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0620-2) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号