首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The coexistence of numerous species within a community results from how those species use available resources. Babblers are one of the major groups of Malaysian insectivorous birds, which frequently forage in dense vegetation cover and have a high level of sympatry. Therefore, examining the diet, prey selection, and niche segregation of babblers can be challenging. In this study, we used high-throughput sequencing to investigate potential dietary overlap or segregation among 10 babbler species of the 4 genera of the family Pellorneidae and Timaliidae: Pellorneum, Malacopteron, Stachyris, and Cyanoderma in central peninsular Malaysia. We tested the hypothesis that trophically similar species may differ in resource use to avoid competitive exclusion. We identified 81 distinct arthropod taxa from fecal samples, belonging to 71 families representing 13 orders, which were predominantly from 16 dipteran, 13 lepidopteran, and 10 coleopteran families. Of all the prey taxa consumed, 45% were found to be distinct across the 10 babbler species, and ˂35% were shared simultaneously by ≥3 babbler species, indicating minimal dietary overlap. The black-throated babbler Stachyris nigricollis and moustached babbler Malacopteron magnirostre had the most generalist tendencies because they consumed a greater variety of prey taxa. Small dietary overlap values (Ojk) and a relatively wide range of food resources suggest that dietary segregation occurred among the studied babblers. The great diversity of prey consumed revealed the presence of dietary flexibility among the sympatric insectivorous birds, thus reducing any active dietary competition and facilitating the coexistence through niche partitioning.  相似文献   

3.
4.
Autism spectrum disorders (ASD) are neurodevelopmental disorders with phenotypic and genetic heterogeneity. Recent studies have reported rare and de novo mutations in ASD, but the allelic architecture of ASD remains unclear. To assess the role of common and rare variations in ASD, we constructed a gene co-expression network based on a widespread survey of gene expression in the human brain. We identified modules associated with specific cell types and processes. By integrating known rare mutations and the results of an ASD genome-wide association study (GWAS), we identified two neuronal modules that are perturbed by both rare and common variations. These modules contain highly connected genes that are involved in synaptic and neuronal plasticity and that are expressed in areas associated with learning and memory and sensory perception. The enrichment of common risk variants was replicated in two additional samples which include both simplex and multiplex families. An analysis of the combined contribution of common variants in the neuronal modules revealed a polygenic component to the risk of ASD. The results of this study point toward contribution of minor and major perturbations in the two sub-networks of neuronal genes to ASD risk.  相似文献   

5.
Jia P  Zhao Z 《PloS one》2012,7(5):e37595
BACKGROUND: Pathway analysis of a set of genes represents an important area in large-scale omic data analysis. However, the application of traditional pathway enrichment methods to next-generation sequencing (NGS) data is prone to several potential biases, including genomic/genetic factors (e.g., the particular disease and gene length) and environmental factors (e.g., personal life-style and frequency and dosage of exposure to mutagens). Therefore, novel methods are urgently needed for these new data types, especially for individual-specific genome data. METHODOLOGY: In this study, we proposed a novel method for the pathway analysis of NGS mutation data by explicitly taking into account the gene-wise mutation rate. We estimated the gene-wise mutation rate based on the individual-specific background mutation rate along with the gene length. Taking the mutation rate as a weight for each gene, our weighted resampling strategy builds the null distribution for each pathway while matching the gene length patterns. The empirical P value obtained then provides an adjusted statistical evaluation. PRINCIPAL FINDINGS/CONCLUSIONS: We demonstrated our weighted resampling method to a lung adenocarcinomas dataset and a glioblastoma dataset, and compared it to other widely applied methods. By explicitly adjusting gene-length, the weighted resampling method performs as well as the standard methods for significant pathways with strong evidence. Importantly, our method could effectively reject many marginally significant pathways detected by standard methods, including several long-gene-based, cancer-unrelated pathways. We further demonstrated that by reducing such biases, pathway crosstalk for each individual and pathway co-mutation map across multiple individuals can be objectively explored and evaluated. This method performs pathway analysis in a sample-centered fashion, and provides an alternative way for accurate analysis of cancer-personalized genomes. It can be extended to other types of genomic data (genotyping and methylation) that have similar bias problems.  相似文献   

6.
In recent years, DISC1 has emerged as one of the most credible and best supported candidate genes for schizophrenia and related neuropsychiatric disorders. Furthermore, increasing evidence--both genetic and functional--indicates that many of its protein interaction partners are also involved in the development of these diseases. In this study, we applied a pooled sample 454 sequencing strategy, to explore the contribution of genetic variation in DISC1 and 10 of its interaction partners (ATF5, Grb2, FEZ1, LIS-1, PDE4B, NDE1, NDEL1, TRAF3IP1, YWHAE, and ZNF365) to schizophrenia susceptibility in an isolated northern Swedish population. Mutation burden analysis of the identified variants in a population of 486 SZ patients and 514 control individuals, revealed that non-synonymous rare variants with a MAF<0.01 were significantly more present in patients compared to controls (8.64% versus 4.7%, P?=?0.018), providing further evidence for the involvement of DISC1 and some of its interaction partners in psychiatric disorders. This increased burden of rare missense variants was even more striking in a subgroup of early onset patients (12.9% versus 4.7%, P?=?0.0004), highlighting the importance of studying subgroups of patients and identifying endophenotypes. Upon investigation of the potential functional effects associated with the identified missense variants, we found that ~90% of these variants reside in intrinsically disordered protein regions. The observed increase in mutation burden in patients provides further support for the role of the DISC1 pathway in schizophrenia. Furthermore, this study presents the first evidence supporting the involvement of mutations within intrinsically disordered protein regions in the pathogenesis of psychiatric disorders. As many important biological functions depend directly on the disordered state, alteration of this disorder in key pathways may represent an intriguing new disease mechanism for schizophrenia and related neuropsychiatric diseases. Further research into this unexplored domain will be required to elucidate the role of the identified variants in schizophrenia etiology.  相似文献   

7.
Tracking evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within infected individuals will help elucidate coronavirus disease 2019 (COVID-19) pathogenesis and inform use of antiviral interventions. In this study, we developed an approach for sequencing the region encoding the SARS-CoV-2 virion surface proteins from large numbers of individual virus RNA genomes per sample. We applied this approach to the WA-1 reference clinical isolate of SARS-CoV-2 passaged in vitro and to upper respiratory samples from 7 study participants with COVID-19. SARS-CoV-2 genomes from cell culture were diverse, including 18 haplotypes with non-synonymous mutations clustered in the spike NH2-terminal domain (NTD) and furin cleavage site regions. By contrast, cross-sectional analysis of samples from participants with COVID-19 showed fewer virus variants, without structural clustering of mutations. However, longitudinal analysis in one individual revealed 4 virus haplotypes bearing 3 independent mutations in a spike NTD epitope targeted by autologous antibodies. These mutations arose coincident with a 6.2-fold rise in serum binding to spike and a transient increase in virus burden. We conclude that SARS-CoV-2 exhibits a capacity for rapid genetic adaptation that becomes detectable in vivo with the onset of humoral immunity, with the potential to contribute to delayed virologic clearance in the acute setting.  相似文献   

8.
Autism is a complex disorder with a high degree of heritability and significant phenotypic and genotypic heterogeneity. Although candidate gene studies and genome-wide screens have failed to identify major causal loci associated with autism, numerous studies have proposed association with several variations in genes in the dopaminergic and serotonergic pathways. Because tetrahydrobiopterin (BH4) is the essential cofactor in the synthesis of these two neurotransmitters, we genotyped 25 SNPs in nine genes of the BH4 pathway in a total of 403 families. Significant nominal association was detected in the gene for 6-pyruvoyl-tetrahydropterin synthase, PTS (chromosome 11), with P = 0.009; this result was not restricted to an affected male-only subset. Multilocus interaction was detected in the BH4 pathway alone, but not across the serotonin, dopamine and BH4 pathways.  相似文献   

9.
10.
《Cell》2022,185(22):4117-4134.e28
  1. Download : Download high-res image (187KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
13.
14.
Low levels of high density lipoprotein-cholesterol (HDL-C) are associated with an elevated risk of arteriosclerotic coronary heart disease. Heritability of HDL-C levels is high. In this research discovery study, we used whole-exome sequencing to identify damaging gene variants that may play significant roles in determining HDL-C levels. We studied 204 individuals with a mean HDL-C level of 27.8 ± 6.4 mg/dl (range: 4–36 mg/dl). Data were analyzed by statistical gene burden testing and by filtering against candidate gene lists. We found 120 occurrences of probably damaging variants (116 heterozygous; four homozygous) among 45 of 104 recognized HDL candidate genes. Those with the highest prevalence of damaging variants were ABCA1 (n = 20), STAB1 (n = 9), OSBPL1A (n = 8), CPS1 (n = 8), CD36 (n = 7), LRP1 (n = 6), ABCA8 (n = 6), GOT2 (n = 5), AMPD3 (n = 5), WWOX (n = 4), and IRS1 (n = 4). Binomial analysis for damaging missense or loss-of-function variants identified the ABCA1 and LDLR genes at genome-wide significance. In conclusion, whole-exome sequencing of individuals with low HDL-C showed the burden of damaging rare variants in the ABCA1 and LDLR genes is particularly high and revealed numerous occurrences in HDL candidate genes, including many genes identified in genome-wide association study reports. Many of these genes are involved in cancer biology, which accords with epidemiologic findings of the association of HDL deficiency with increased risk of cancer, thus presenting a new area of interest in HDL genomics.  相似文献   

15.
16.
《Genomics》2021,113(4):2645-2655
The prevalence of familial multiple sclerosis (FMS) is increasing worldwide which endorses the heritability of the disease. Given that many genome variations are ethnicity-specific and consanguineous marriage could affect genetic diseases, hereditary disease gene analysis among FMS patients from Iran, a country with high rates of parental consanguinity, could be highly effective in finding mutations underlying disease pathogenesis. To examine rare genetic mutations, we selected three Iranian FMS cases with ≥3 MS patients in more than one generation and performed whole exome sequencing. We identified a homozygous rare missense variant in POLD2 (p. Arg141Cys; rs372336011). Molecular dynamics analysis showed reduced polar dehydration energy and conformational changes in POLD2 mutant. Further, we found a heterozygote rare missense variant in NBFP1 (p. Gly487Asp; rs778806175). Our study revealed the possible role of novel rare variants in FMS. Molecular dynamic simulation provided the initial evidence of the structural changes behind POLD2 mutant.  相似文献   

17.
High-throughput gene trapping is a random approach for inducing insertional mutations across the mouse genome. This approach uses gene trap vectors that simultaneously inactivate and report the expression of the trapped gene at the insertion site, and provide a DNA tag for the rapid identification of the disrupted gene. Gene trapping has been used by both public and private institutions to produce libraries of embryonic stem (ES) cells harboring mutations in single genes. Presently, approximately 66% of the protein coding genes in the mouse genome have been disrupted by gene trap insertions. Among these, however, genes encoding signal peptides or transmembrane domains (secretory genes) are underrepresented because they are not susceptible to conventional trapping methods. Here, we describe a high-throughput gene trapping strategy that effectively targets secretory genes. We used this strategy to assemble a library of ES cells harboring mutations in 716 unique secretory genes, of which 61% were not trapped by conventional trapping, indicating that the two strategies are complementary. The trapped ES cell lines, which can be ordered from the International Gene Trap Consortium (http://www.genetrap.org), are freely available to the scientific community.  相似文献   

18.
Parkinson disease(PD) is a progressive neurodegenerative movement disorder. Both environmental and genetic factors play important roles in PD etiology. A number of environmental toxins cause parkinsonism in human and animal models. Genetic studies of rare early onset familial PD cases resulted in identification of disease-linked mutations in multiple genes. Nevertheless, the potential interaction between environment and genetics in PD pathogenesis remains largely unknown. We hypothesized that environmental factors induce abnormal epigenetic regulation that is involved in the pathogenesis of both familial and sporadic PD. We determined the global methylation status of 80,000e110,000 Cp G sites in each of the five sporadic PD patient brains and five age and postmodern interval matched control brains utilizing bisulfite padlock sequencing. Multiple genes involved in neurogenesis, particularly the ones in the Wnt signaling pathway, were hypermethylated in PD brains compared to their matched control brains. Consistent with the DNA methylation changes, marked reduction of protein expression was observed for four Wnt and neurogenesis related genes(FOXC1, NEURG2, SPRY1, and CTNNB1) in midbrain dopaminergic(DA) neurons of PD. The treatment of low concentration of 1-methyl-4-phenylpyridinium(MPPt) for cells resulted in downregulation of Wnt related genes. The study revealed an important link between the epigenetic disregulation of Wnt signaling and the pathogenesis and progression of PD.  相似文献   

19.
Common variation in over 100 genes has been implicated in the risk of developing asthma, but the contribution of rare variants to asthma susceptibility remains largely unexplored. We selected nine genes that showed the strongest signatures of weak purifying selection from among 53 candidate asthma-associated genes, and we sequenced the coding exons and flanking noncoding regions in 450 asthmatic cases and 515 nonasthmatic controls. We observed an overall excess of p values <0.05 (p = 0.02), and rare variants in four genes (AGT, DPP10, IKBKAP, and IL12RB1) contributed to asthma susceptibility among African Americans. Rare variants in IL12RB1 were also associated with asthma susceptibility among European Americans, despite the fact that the majority of rare variants in IL12RB1 were specific to either one of the populations. The combined evidence of association with rare noncoding variants in IL12RB1 remained significant (p = 3.7 × 10(-4)) after correcting for multiple testing. Overall, the contribution of rare variants to asthma susceptibility was predominantly due to noncoding variants in sequences flanking the exons, although nonsynonymous rare variants in DPP10 and in IL12RB1 were associated with asthma in African Americans and European Americans, respectively. This study provides evidence that rare variants contribute to asthma susceptibility. Additional studies are required for testing whether prioritizing genes for resequencing on the basis of signatures of purifying selection is an efficient means of identifying novel rare variants that contribute to complex disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号