首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

The 3′ splice site (SS) at the end of pre-mRNA introns has a consensus sequence (Y)nNYAG for constitutive splicing of mammalian genes. Deviation from this consensus could change or interrupt the usage of the splice site leading to alternative or aberrant splicing, which could affect normal cell function or even the development of diseases. We have shown that the position “N” can be replaced by a CA-rich RNA element called CaRRE1 to regulate the alternative splicing of a group of genes.

Results

Taking it a step further, we searched the human genome for purine-rich elements between the -3 and -10 positions of the 3′ splice sites of annotated introns. This identified several thousand such 3′SS; more than a thousand of them contain at least one copy of G tract. These sites deviate significantly from the consensus of constitutive splice sites and are highly associated with alterative splicing events, particularly alternative 3′ splice and intron retention. We show by mutagenesis analysis and RNA interference that the G tracts are splicing silencers and a group of the associated exons are controlled by the G tract binding proteins hnRNP H/F. Species comparison of a group of the 3′SS among vertebrates suggests that most (~87%) of the G tracts emerged in ancestors of mammals during evolution. Moreover, the host genes are most significantly associated with cancer.

Conclusion

We call these elements together with CaRRE1 regulatory RNA elements between the Py and 3′AG (REPA). The emergence of REPA in this highly constrained region indicates that this location has been remarkably permissive for the emergence of de novo regulatory RNA elements, even purine-rich motifs, in a large group of mammalian genes during evolution. This evolutionary change controls alternative splicing, likely to diversify proteomes for particular cellular functions.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1143) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.

Background

The exon junction complex (EJC) is a dynamic multi-protein complex deposited onto nuclear spliced mRNAs upstream of exon-exon junctions. The four core proteins, eIF4A3, Magoh, Y14 and MLN51, are stably bound to mRNAs during their lifecycle, serving as a binding platform for other nuclear and cytoplasmic proteins. Recent evidence has shown that the EJC is involved in the splicing regulation of some specific events in both Drosophila and mammalian cells.

Results

Here, we show that knockdown of EJC core proteins causes widespread alternative splicing changes in mammalian cells. These splicing changes are specific to EJC core proteins, as knockdown of eIF4A3, Y14 and MLN51 shows similar splicing changes, and are different from knockdown of other splicing factors. The splicing changes can be rescued by a siRNA-resistant form of eIF4A3, indicating an involvement of EJC core proteins in regulating alternative splicing. Finally, we find that the splicing changes are linked with RNA polymerase II elongation rates.

Conclusion

Taken together, this study reveals that the coupling between EJC proteins and splicing is broader than previously suspected, and that a possible link exists between mRNP assembly and splice site recognition.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0551-7) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.

Background

Soluble guanylyl cyclase (sGC) plays a central role in nitric oxide (NO)-mediated signal transduction in the cardiovascular, nervous and gastrointestinal systems. Alternative RNA splicing has emerged as a potential mechanism to modulate sGC expression and activity. C-α1 sGC is an alternative splice form that is resistant to oxidation-induced protein degradation and demonstrates preferential subcellular distribution to the oxidized environment of endoplasmic reticulum (ER).

Methodology/Principal Findings

Here we report that splicing of C-α1 sGC can be modulated by H2O2 treatment in BE2 neuroblastoma and MDA-MD-468 adenocarcinoma human cells. In addition, we show that the H2O2 treatment of MDA-MD-468 cells selectively decreases protein levels of PTBP1 and hnRNP A2/B1 splice factors identified as potential α1 gene splicing regulators by in silico analysis. We further demonstrate that down-regulation of PTBP1 by H2O2 occurs at the protein level with variable regulation observed in different breast cancer cells.

Conclusions/Significance

Our data demonstrate that H2O2 regulates RNA splicing to induce expression of the oxidation-resistant C-α1 sGC subunit. We also report that H2O2 treatment selectively alters the expression of key splicing regulators. This process might play an important role in regulation of cellular adaptation to conditions of oxidative stress.  相似文献   

7.
8.
9.
10.
11.
Lee C  Mayfield RD  Harris RA 《PloS one》2010,5(11):e14044

Background

Gamma-aminobutyric acid type B (GABAB) receptors decrease neural activity through G protein signaling. There are two subunits, GABAB1 and GABAB2. Alternative splicing provides GABAB1 with structural and functional diversity. cDNA microarrays showed strong signals from human brain RNA using GABAB1 intron 4 region probes. Therefore, we predicted the existence of novel splice variants.

Methodology/Principal Findings

Based on the probe sequence analysis, we proposed two possible splice variants, GABAB1j and GABAB1k. The existence of human GABAB1j was verified by quantitative real-time PCR, and mouse GABAB1j was found from a microarray probe set based on human GABAB1j sequence. GABAB1j open reading frames (ORF) and expression patterns are not conserved across species, and they do not have any important functional domains except sushi domains. Thus, we focused on another possible splice variant, GABAB1k. After obtaining PCR evidence for GABAB1k existence from human, mouse, and rat, it was cloned from human and mouse by PCR along with three additional isoforms, GABAB1l, GABAB1m, and GABAB1n. Their expression levels by quantitative real-time PCR are relatively low in brain although they may be expressed in specific cell types. GABAB1l and GABAB1m inhibit GABAB receptor-induced G protein-activated inwardly rectifying K+ channel (GIRK) currents at Xenopus oocyte two-electrode voltage clamp system.

Conclusions/Significance

This study supports previous suggestions that intron 4 of GABAB1 gene is a frequent splicing spot across species. Like GABAB1e, GABAB1l and GABAB1m do not have transmembrane domains but have a dimerization motif. So, they also could be secreted and bind GABAB2 dominantly instead of GABAB1a. However, only GABAB1l and GABAB1m are N- and C-terminal truncated splicing variants and impair receptor function. This suggests that the intron 4 containing N-terminal truncation is necessary for the inhibitory action of the new splice variants.  相似文献   

12.

Background and Objective

Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known.

Objective

To characterize the potential defect in β-agonist induced cAMP in ASM derived from asthmatic in comparison to non-asthmatic subjects and to investigate its mechanism.

Methods

We examined β2-adrenergic (β2AR) receptor expression and basal β-agonist and forskolin (direct activator of adenylyl cyclase) stimulated cAMP production in asthmatic cultured ASM (n = 15) and non-asthmatic ASM (n = 22). Based on these results, PDE activity, PDE4D expression and cell proliferation were determined.

Results

In the presence of IBMX, a pan PDE inhibitor, asthmatic ASM had ∼50% lower cAMP production in response to isoproterenol, albuterol, formoterol, and forskolin compared to non-asthmatic ASM. However when PDE4 was specifically inhibited, cAMP production by the agonists and forskolin was normalized in asthmatic ASM. We then measured the amount and activity of PDE4, and found ∼2-fold greater expression and activity in asthmatic ASM compared to non-asthmatic ASM. Furthermore, inhibition of PDE4 reduced asthmatic ASM proliferation but not that of non-asthmatic ASM.

Conclusion

Decreased β-agonist induced cAMP in ASM from asthmatics results from enhanced degradation due to increased PDE4D expression. Clinical manifestations of this dysregulation would be suboptimal β-agonist-mediated bronchodilation and possibly reduced control over increasing ASM mass. These phenotypes appear to be “hard-wired” into ASM from asthmatics, as they do not require an inflammatory environment in culture to be observed.  相似文献   

13.
14.
15.

Background

Dietary lipids or pharmacologic modulation of lipid metabolism are potential therapeutic strategies in inflammatory bowel disease (IBD). Therefore, we analysed alterations of bioactive lipids in experimental models of colitis and examined the functional consequence of the second messenger ceramide in inflammatory pathways leading to tissue destruction.

Methodology/Principal Findings

Chronic colitis was induced by dextran-sulphate-sodium (DSS) or transfer of CD4+CD62L+ cells into RAG1−/−-mice. Lipid content of isolated murine intestinal epithelial cells (IEC) was analysed by tandem mass spectrometry. Concentrations of MMP-1 in supernatants of Caco-2-IEC and human intestinal fibroblasts from patients with ulcerative colitis were determined by ELISA. Imipramine was used for pharmacologic inhibition of acid sphingomyelinase (ASM). Ceramide increased by 71% in chronic DSS–induced colitis and by 159% in the transfer model of colitis. Lysophosphatidylcholine (LPC) decreased by 22% in both models. No changes were detected for phosphatidylcholine. Generation of ceramide by exogenous SMase increased MMP-1-protein production of Caco-2-IEC up to 7-fold. Inhibition of ASM completely abolished the induction of MMP-1 by TNF or IL-1β in Caco-2-IEC and human intestinal fibroblasts.

Conclusions/Significance

Mucosal inflammation leads to accumulation of ceramide and decrease of LPC in the intestinal epithelium. One aspect of ceramide generation is an increase of MMP-1. Induction of MMP-1 by TNF or IL-1β is completely blocked by inhibition of ASM with imipramine. Therefore, inhibition of ASM may offer a treatment strategy to reduce MMP-1 expression and tissue destruction in inflammatory conditions.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号