首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants adjust their photosynthetic activity to changing light conditions. A central regulation of photosynthesis depends on the xanthophyll cycle, in which the carotenoid violaxanthin is converted into zeaxanthin in strong light, thus activating the dissipation of the excess absorbed energy as heat and the scavenging of reactive oxygen species. Violaxanthin deepoxidase (VDE), the enzyme responsible for zeaxanthin synthesis, is activated by the acidification of the thylakoid lumen when photosynthetic electron transport exceeds the capacity of assimilatory reactions: at neutral pH, VDE is a soluble and inactive enzyme, whereas at acidic pH, it attaches to the thylakoid membrane where it binds its violaxanthin substrate. VDE also uses ascorbate as a cosubstrate with a pH-dependent Km that may reflect a preference for ascorbic acid. We determined the structures of the central lipocalin domain of VDE (VDEcd) at acidic and neutral pH. At neutral pH, VDEcd is monomeric with its active site occluded within a lipocalin barrel. Upon acidification, the barrel opens up and the enzyme appears as a dimer. A channel linking the two active sites of the dimer can harbor the entire carotenoid substrate and thus may permit the parallel deepoxidation of the two violaxanthin β-ionone rings, making VDE an elegant example of the adaptation of an asymmetric enzyme to its symmetric substrate.  相似文献   

2.
精氨酸脱亚胺酶(arginine deiminase,EC 3.5.3.6,ADI)因其可作为精氨酸营养缺陷型肿瘤细胞的靶向治疗药物而受到广泛关注. 目前,支原体来源的重组ADI处于肝癌和黑素瘤的三期临床研究阶段. 作为药用酶,当前报道的ADI在体内生理条件下普遍存在酶活低、半衰期短、底物亲和性弱等局限性.本研究结合随机突变及基于理性设计的定点突变两种方法,对研究室前期自主筛选得到的变形假单胞菌Pseudomonas plecoglossicida来源的ADI经一轮定向进化后所获优势突变株M314(A128T/H404R/I410L)进行分子改造.通过对随机突变法获得的1480个突变株进行96孔板高通量筛选,得到优良突变株M173(A128T/H404R/I410L/K272R);同时,基于同源序列比对及ADI蛋白三维结构同源建模,采用PyMOL软件理性预测和分析其活性中心及附近保守区域氨基酸位点对蛋白功能的影响,选择了6个位点D78E、L223I、P230I、S245D、A275N、R400M分别在M314的基础上进行定点突变,最终获得优势突变株M04(A128T/H404R/I410L/S245D). 通过对突变株的酶学性质以及动力学参数分析发现:生理pH值下,突变株M173的酶比活(12.32 U/mg)在M314(9.02 U/mg)的基础上提升3659%,Kcat/Km提高5236%;而突变株M04的最适pH由6.5升高至7.0,更接近体内生理pH,其比酶活(14.66 U/mg)较M314提升62.53 %,Kcat/Km提高了37.12%. 综上结果,本研究结合两种分子改造方法成功地对该ADI在生理pH条件下的酶活和酶学性质进行了改良,并为蛋白质的分子改造策略提供了理论基础和实验依据.  相似文献   

3.
Regulation of violaxanthin de-epoxidase (VDE) involves a conformational change at low lumenal pH, followed by binding of the enzyme to the thylakoid membrane. The role of histidine residues in this process was studied by release of unbound enzyme from thylakoids upon sonication, on a pH scale from 4.7 to 7.1. The co-operativity for binding of spinach VDE (four histidines) to the membrane was found to be 3.8, with respect to protons, and had an inflexion point at pH 6.6, whereas VDE from wheat (three histidines) showed a co-operativity of 2.9 and had an inflexion point at pH 6.2. Mutant forms of VDE were constructed and probed for their binding to the outside of thylakoid membranes. With one or two histidines substituted for alanine or arginine, a lower co-operativity (1.6–2.3) was found, compared with the wild type. Based on these findings, and that the pKa value for histidine is within the range where the VDE binding takes place, we propose that protonation of the histidine residues at low pH induces the conformational change of VDE, and hence indirectly regulates binding of the enzyme to the thylakoid membrane.  相似文献   

4.
H/ACA RNA-guided ribonucleoprotein particle (RNP), the most complicated RNA pseudouridylase so far known, uses H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, L7Ae and Gar1) for pseudouridylation. Although it was shown that Gar1 not only facilitates the product release, but also enhances the catalytic activity, the chemical role that Gar1 plays in this complicated machinery is largely unknown. Kinetics measurement on Pyrococcus furiosus RNPs at different temperatures making use of fluorescence anisotropy showed that Gar1 reduces the catalytic barrier through affecting the activation entropy instead of enthalpy. Site-directed mutagenesis combined with molecular dynamics simulations demonstrated that V149 in the thumb loop of Cbf5 is critical in placing the target uridine to the right position toward catalytic D85 of Cbf5. The enzyme elegantly aligns the position of uridine in the catalytic site with the help of Gar1. In addition, conversion of uridine to pseudouridine results in a rigid syn configuration of the target nucleotide in the active site and causes Gar1 to pull out the thumb. Both factors guarantee the efficient release of the product.  相似文献   

5.
Falcipain-2 is one of the principal hemoglobinases of Plasmodium falciparum, a human malaria parasite. It has a typical papain family cysteine protease structural organization, a large pro-domain, a mature domain with conserved active site amino acids. Pro-domain of falcipain-2 also contains two important conserved motifs, "GNFD" and "ERFNIN." The "GNFD" motif has been shown to be responsible for correct folding and stability in case of many papain family proteases. In the present study, we carried out site-directed mutagenesis to assess the roles of active site residues and pro-domain residues for the activity of falcipain-2. Our results showed that substitutions of putative active site residues; Q36, C42, H174, and N204 resulted in complete loss of falcipain-2 activity, while W206 and D155 mutants retained partial/complete activity in comparison to the wild type falcipain-2. Homology modeling data also corroborate the results of mutagenesis; Q36, C42, H174, N204, and W206 residues form the active site loop of the enzyme and D155 lie outside the active pocket. Substitutions in the pro-region did not affect the activity of falcipain-2. This implies that falcipain-2 shares active site residues with other members of papain family, however pro-region of falcipain-2 does not play any role in the activity of enzyme.  相似文献   

6.
OxyR5, from a Xanthomonas campestris pv. phaseoli H(2)O(2)-resistant mutant, contains the two mutations G197D and L301R. The protein exists in its oxidized-like form in the absence of oxidants as judged by the protein's ability to activate the ahpC promoter. Analysis of DNase I footprint patterns indicates that under reducing conditions OxyR5 and OxyRG197D bind to the target site in the ahpC promoter in a manner similar to oxidized wild-type OxyR. Site-directed mutagenesis showed that OxyR5 behaves like oxidized OxyR, independent of the highly conserved C residues at positions 199 and 208 where, in normal OxyR, a disulfide bond between these residues converts the protein from its reduced to the oxidized form. The presence of aspartic acid or valine residue at position 197 caused OxyR to behave like the oxidized form in uninduced cells. Changing D197 to A or T in OxyR5 resulted in proteins with similar properties to native OxyR. In vivo, OxyR5 probably locked in an oxidized-like conformation, resulting in continuous high-level activation of target genes in the OxyR regulon.  相似文献   

7.
N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase) catalyzes the reversible epimerization between N-acetyl-D-glucosamine (GlcNAc) and N-acetyl-D-mannosamine (ManNAc). We report here the 2.0 A resolution crystal structure of the GlcNAc 2-epimerase from Anabaena sp. CH1. The structure demonstrates an (alpha/alpha)(6) barrel fold, which shows structural homology with porcine GlcNAc 2-epimerase as well as a number of glycoside hydrolase enzymes and other sugar-metabolizing enzymes. One side of the barrel structure consists of short loops involved in dimer interactions. The other side of the barrel structure is comprised of long loops containing six short beta-sheets, which enclose a putative central active-site pocket. Site-directed mutagenesis of conserved residues near the N-terminal region of the inner alpha helices shows that R57, H239, E308, and H372 are strictly required for activity. E242 and R375 are also essential in catalysis. Based on the structure and kinetic analysis, H239 and H372 may serve as the key active site acid/base catalysts. These results suggest that the (alpha/alpha)(6) barrel represents a steady fold for presenting active-site residues in a cleft at the N-terminal ends of the inner alpha helices, thus forming a fine-tuned catalytic site in GlcNAc 2-epimerase.  相似文献   

8.
Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the proton-coupled four-electron reduction of biliverdin IXα’s two vinyl groups to produce phycocyanobilin, an essential chromophore for phytochromes, cyanobacteriochromes and phycobiliproteins. Previous site directed mutagenesis studies indicated that the fully conserved residue His74 plays a critical role in the H-bonding network that permits proton transfer. Here, we exploit X-ray crystallography, enzymology and molecular dynamics simulations to understand the functional role of this invariant histidine. The structures of the H74A, H74E and H74Q variants of PcyA reveal that a “conserved” buried water molecule that bridges His74 and catalytically essential His88 is not required for activity. Despite distinct conformations of Glu74 and Gln74 in the H74E and H74Q variants, both retain reasonable activity while the H74A variant is inactive, suggesting smaller residues may generate cavities that increase flexibility, thereby reducing enzymatic activity. Molecular dynamic simulations further reveal that the crucial active site residue Asp105 is more dynamic in H74A compared to wild-type PcyA and the two other His74 variants, supporting the conclusion that the Ala74 mutation has increased the flexibility of the active site.  相似文献   

9.
Human aromatase is responsible for estrogen biosynthesis and is implicated, in particular, in reproduction and estrogen-dependent tumor proliferation. The molecular structure model is largely derived from the X-ray structure of bacterial cytochromes sharing only 15-20% identities with hP-450arom. In the present study, site directed mutagenesis experiments were performed to examine the role of K119, C124, I125, K130, E302, F320, D309, H475, D476, S470, I471 and I474 of aromatase in catalysis and for substrate binding. The catalytic properties of mutants, transfected in 293 cells, were evaluated using androstenedione, testosterone or nor-testosterone as substrates. In addition, inhibition profiles for these mutants with indane or indolizinone derivatives were obtained. Our results, together with computer modeling, show that catalytic properties of mutants vary in accordance with the substrate used, suggesting possible differences in substrates positioning within the active site. In this respect, importance of residues H475, D476 and K130 was discussed. These results allow us to hypothesize that E302 could be involved in the aromatization mechanism with nor-androgens, whereas D309 remains involved in androgen aromatization. This study highlights the flexibility of the substrate-enzyme complex conformation, and thus sheds new light on residues that may be responsible for substrate specificity between species or aromatase isoforms.  相似文献   

10.
The role of two "basic patch" residues, Arg-38 and His-62, in the catalytic function and anion-dependent activation of yeast 3-phosphoglycerate kinase (PGK) was investigated by site-directed mutagenesis. Steady-state kinetics and NMR experiments were conducted to characterize the functional properties and structural integrity of the R38A and H62A mutants. The results of these studies, in combination with earlier mutagenesis experiments, suggest that Arg-38 is the only catalytically essential residue among the conserved histidines and arginines of the basic patch. It appears that, similar to the remaining basic patch residues, His-62 is important for anion-dependent activation but not for enzyme activity. Cumulative evidence from this study and from previous mutagenesis experiments suggests that the basic patch region is in effect an extended anion binding site that encompasses both the catalytic and the general anion-binding site. It is proposed that substitution of any one of the basic patch residues results in an increased localization of the catalytic site. Substrate and product may still bind to this site, but a simultaneous binding of activatory anions, required for activation, has been impaired. NMR experiments suggest that the conformational changes observed upon binding of 3-PG to wild-type PGK are necessary for anion- and substrate-dependent activation.  相似文献   

11.
To investigate the roles of the active site residues in the catalysis of Bacillus thuringiensis WB7 chitinase, twelve mutants, F201L, F201Y, G203A, G203D, D205E, D205N, D207E, D207N, W208C, W208R, E209D and E209Q were constructed by site-directed mutagenesis. The results showed that the mutants F201L, G203D, D205N, D207E, D207N, W208C and E209D were devoid of activity, and the loss of the enzymatic activities for F201Y, G203A, D205E, W208R and E209Q were 72, 70, 48, 31 and 29%, respectively. The pH-activity profiles indicated that the optimum pH for the mutants as well as for the wildtype enzyme was 8.0. E209Q exhibited a broader active pH range while D205E, G203A and F201Y resulted in a narrower active pH range. The pH range of activity reduced 1 unit for D205E, and 2 units for G203A and F201Y. The temperature-activity profiles showed that the optimum temperature for other mutants as well as wildtype enzyme was 60°C, but 50°C for G203A, which suggested that G203A resulted in a reduction of thermostability. The study indicated that the six active site residues involving in mutagenesis played an important part in WB7 chitinase. In addition, the catalytic mechanisms of the six active site residues in WB7 chitinase were discussed.  相似文献   

12.
Electrostatic interactions are important in protein folding, binding, flexibility, stability and function. The pH at which the enzyme is maximally active is determined by the pKas of the active site residues, which are modulated by several factors including the change in electrostatics in its vicinity. As the acidic xylanases are important in food and animal feed industries, electrostatic interactions are introduced in Bacillus circulans xylanase to shift their pH optima towards the acidic side. Arg substitutions are made to modulate the pKas of the active site residues. Neutral residues are substituted by Arg in such a way that the substituted residue can make direct interaction with the catalytic residues. However, the mutations with other titratable residues (Asp, Arg, Lys, His, Tyr, and Ser) present in between the catalytic sites and the substituted sites are avoided. Site directed mutagenesis was conducted to confirm the strategy. The results show the shift in pH optima of the mutants towards the acidic side by 0.5–1.5 unit. Molecular dynamics simulation of the mutant V37R reveals that the decrease in activity is due to the increase in distance between the substrate oxygen atoms and catalytic glutamates.  相似文献   

13.
Prosser DE  Guo Y  Jia Z  Jones G 《Biophysical journal》2006,90(10):3389-3409
Human CYP27A1 is a mitochondrial cytochrome P450, which is principally found in the liver and plays important roles in the biological activation of vitamin D(3) and in the biosynthesis of bile acids. We have applied a systematic analysis of hydrogen bonding patterns in 11 prokaryotic and mammalian CYP crystal structures to construct a homology-based model of CYP27A1. Docking of vitamin D(3) structures into the active site of this model identified potential substrate contact residues in the F-helix, the beta-3 sheet, and the beta-5 sheet. Site-directed mutagenesis and expression in COS-1 cells confirmed that these positions affect enzymatic activity, in some cases shifting metabolism of 1alpha-hydroxyvitamin D(3) to favor 25- or 27-hydroxylation. The results suggest that conserved hydrophobic residues in the beta-5 hairpin help define the shape of the substrate binding cavity and that this structure interacts with Phe-248 in the F-helix. Mutations directed toward the beta-3a strand suggested a possible heme-binding interaction centered on Asn-403 and a structural role for substrate contact residues Thr-402 and Ser-404.  相似文献   

14.
Three plant xanthophylls are components of the xanthophyll cycle in which, upon exposure of leaves to high light, the enzyme violaxanthin de-epoxidase (VDE) transforms violaxanthin into zeaxanthin via the intermediate antheraxanthin. Previous work () showed that xanthophylls are bound to Lhc proteins and that substitution of violaxanthin with zeaxanthin induces conformational changes and fluorescence quenching by thermal dissipation. We have analyzed the efficiency of different Lhc proteins to exchange violaxanthin with zeaxanthin both in vivo and in vitro. Light stress of Zea mays leaves activates VDE, and the newly formed zeaxanthin is found primarily in CP26 and CP24, whereas other Lhc proteins show a lower exchange capacity. The de-epoxidation system has been reconstituted in vitro by using recombinant Lhc proteins, recombinant VDE, and monogalactosyl diacylglycerol (MGDG) to determine the intrinsic capacity for violaxanthin-to-zeaxanthin exchange of individual Lhc gene products. Again, CP26 was the most efficient in xanthophyll exchange. Biochemical and spectroscopic analysis of individual Lhc proteins after de-epoxidation in vitro showed that xanthophyll exchange occurs at the L2-binding site. Xanthophyll exchange depends on low pH, implying that access to the binding site is controlled by a conformational change via lumenal pH. These findings suggest that the xanthophyll cycle participates in a signal transduction system acting in the modulation of light harvesting versus thermal dissipation in the antenna system of higher plants.  相似文献   

15.
J H Shim  S J Benkovic 《Biochemistry》1999,38(31):10024-10031
Site-directed mutagenesis followed by studies of the pH dependence of the kinetic parameters of the mutants has been used to probe the role of the active site residues and loops in catalysis by glycinamide ribonucleotide transformylase (EC 2.1.2.2). The analysis of the mutants of the strictly conserved active site residues, His108 and Asp144, revealed that His108 acts in a salt bridge with Asp144 as a general acid catalyst with a pK(a) value of 9.7. Asp144 also plays a key role in the preparation of the active site geometry for catalysis. The rate-limiting step in the pH range of 6-10 appears to be the catalytic steps involving tetrahedral intermediates, supported by the observation of a pL (L being H or D)-independent solvent deuterium isotope effect of 2. The ionization of the amino group of glycinamide ribonucleotide both as a free and as a bound form dominates the kinetic behavior at low pH. The analysis of a mutation, H121Q, within the loop spanning amino acids 111-131 suggests the closure of the loop is involved in the binding of the substrate. The kinetic behavior parallels pH effects revealed by a series of X-ray crystallographic structures of the apoenzyme and inhibitor-bound enzyme [Su, Y., Yamashita, M. M., Greasley, S. E. , Mullen, C. A., Shim, J. H., Jennings, P. A., Benkovic, S. J., and Wilson, I. A. (1998) J. Mol. Biol. 281, 485-499], permitting a more exact formulation of the probable catalytic mechanism.  相似文献   

16.
The functionally versatile (β/α)(8) barrel scaffold was used to migrate triosephosphate isomerase (TPI) to thiamin phosphate synthase (TPS) activity, two enzymes that share the same fold but catalyze unrelated reactions through different mechanisms. The high sensitivity of the selection methodology was determinant to succeed in finding proteins with the desired activity. A combination of rational design and random mutagenesis was used to achieve the desired catalytic migration. One of the parallel directed evolution strategies followed resulted in TPI derivatives able to complement the thiamin phosphate auxotrophy phenotype of an Escherichia coli strain deleted of thiE, the gene that codes for TPS. Successive rounds of directed evolution resulted in better complementing TPI variants. Biochemical characterization of some of the evolved TPI clones demonstrated that the K(m) for the TPS substrates was similar to that of the native TPS; however and in agreement with the very slow complementation phenotype, the k(cat) was 4 orders of magnitude lower, indicating that substrate binding played a major role on selection. Interestingly, the crystal structure of the most proficient variant showed a slightly modified TPI active site occupied by a thiamin-phosphate-like molecule. Substitution of key residues in this region reduced TPS activity, strongly suggesting that this is also the catalytic site for the evolved TPS activity. The presence of the TPS reaction product at the active site explains the fast inactivation of the enzyme observed. In conclusion, by combining rational design, random mutagenesis and a very sensitive selection, it is possible to achieve enzymatic activity migration.  相似文献   

17.
Fungal homoserine dehydrogenase (HSD) is required for the biosynthesis of threonine, isoleucine and methionine from aspartic acid, and is a target for antifungal agents. HSD from the yeast Saccharomyces cerevisiae was overproduced in Escherichia coli and 25 mg of soluble dimeric enzyme was purified per liter of cell culture in two steps. HSD efficiently reduces aspartate semialdehyde to homoserine (Hse) using either NADH or NADPH with kcat/Km in the order of 10(6-7) M(-1) x s(-1) at pH 7.5. The rate constant of the reverse direction (Hse oxidation) was also significant at pH 9.0 (kcat/Km approximately 10(4-5) M(-1) x s(-1)) but was minimal at pH 7.5. Chemical modification of HSD with diethyl pyrocarbonate (DEPC) resulted in a loss of activity that could be obviated by the presence of substrates. UV difference spectra revealed an increase in absorbance at 240 nm for DEPC-modified HSD consistent with the modification of two histidines (His) per subunit. Amino acid sequence alignment of HSD illustrated the conservation of two His residues among HSDs. These residues, His79 and His309, were substituted to alanine (Ala) using site directed mutagenesis. HSD H79A had similar steady state kinetics to wild type, while kcat/Km for HSD H309A decreased by almost two orders of magnitude. The recent determination of the X-ray structure of HSD revealed that His309 is located at the dimer interface [B. DeLaBarre, P.R. Thompson, G.D. Wright, A.M. Berghuis, Nat. Struct. Biol. 7 (2000) 238-244]. The His309Ala mutant enzyme was found in very high molecular weight complexes rather than the expected dimer by analytical gel filtration chromatography analysis. Thus the invariant His309 plays a structural rather than catalytic role in these enzymes.  相似文献   

18.
Summary Polyclonal anti-myoglobin antibodies were fractionated into five subpopulations directed against five specific antigenic sites, respectively. The equilibrium characteristics of each subpopulation and orginal anti-myoglobin immobilized to CNBr-activated Sepharose 4B were compared. The four subpopulations of antibodies lost their binding abilities at around pH 4.5 because of the conformational changes of myoglobin. However, the subpopulation directed against the region containing three histidine residues dissociated with the antigenic site at higher pH, and such equilibrium characteristics were considered to be caused by the dissociation characteristics of histidine residues. Therefore, the effects of histidine modification in BSA on the adsorption capacities of original anti-BSA antibody and a pH sensitive fraction of it were compared. The adsorption capacity of the pH sensitive fraction showed greater decrease than that of original antibody by histidine modification in BSA. These results imply that the antigenic sites in which histidine residues play an important role for the binding to antibodies show equilibrium characteristics sensitive to pH.  相似文献   

19.
Playing pivotal roles in tumor growth and metastasis, matrix metalloproteinase‐14 (MMP‐14) is an important cancer target. Potent inhibitory Fab 3A2 with therapy‐desired high selectivity has been isolated from a synthetic antibody library carrying long CDR‐H3s. However, like many standard mechanism protease inhibitors, Fab 3A2 can be cleaved by high concentrations of MMP‐14 after extended incubation at acidic pH. Edman sequencing of generated 3A2 fragments indicated that cleavage occurred within its CDR‐H3 between residues N100h (P1) and L100i (P1’). To improve proteolytic stability of 3A2, three positions adjacent to its cleavage site (P1, P1’, and P3’) were subjected to site‐saturation mutagenesis (SSM). Mutations at P1’ (L100i) resulted in loss of inhibition function, while screening of 3A2 Fab mutants at P1 (N100h) or P3’ (A100k) positions identified four clones exhibiting improvements in both stability and inhibition potency. The majority of these mutants with improved stability were substitutions to either hydrophobic (Lue, Trp) or basic residues (Arg, Lys, His). Combinations of these beneficial mutations resulted in a double mutant N100hR/A100kR, which prolonged half‐life twofold with an inhibition potency KI of 6.6 nM. Enzyme kinetics and competitive ELISA suggested that N100hR/A100kR was a competitive inhibitor overlapping its binding epitope with that of nTIMP‐2. This study demonstrated that site‐directed mutagenesis at or near the cleavage position reduced proteolytic liability of standard mechanism protease inhibitors especially inhibitory antibodies.  相似文献   

20.
The xanthophyll cycle (Xc), which involves violaxanthin de-epoxidase (VDE) and the zeaxanthin epoxidase (ZEP), is one of the most rapid and efficient responses of plant and algae to high irradiance. High light intensity can activate VDE to convert violaxanthin (Vx) to zeaxanthin (Zx) via antheraxanthin (Ax). However, it remains unclear whether VDE remains active under low light or dark conditions when there is no significant accumulation of Ax and Zx, and if so, how the ΔpH required for activation of VDE is built. In this study, we used salicylaldoxime (SA) to inhibit ZEP activity in the intertidal macro-algae Ulva sp. (Ulvales, Chlorophyta) and then characterized VDE under low light and dark conditions with various metabolic inhibitors. With inhibition of ZEP by SA, VDE remained active under low light and dark conditions, as indicated by large accumulations of Ax and Zx at the expense of Vx. When PSII-mediated linear electron transport systems were completely inhibited by SA and DCMU, alternative electron transport systems (i.e., cyclic electron transport and chlororespiration) could maintain VDE activity. Furthermore, accumulations of Ax and Zx decreased significantly when SA, DCMU, or DBMIB together with an inhibitor of chlororespiration (i.e., propyl gallate (PG)) were applied to Ulva sp. This result suggests that chlororespiration not only participates in the build-up of the necessary ΔpH, but that it also possibly influences VDE activity indirectly by diminishing the oxygen level in the chloroplast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号