首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ALS is characterised by a focal onset of motor neuron loss, followed by contiguous outward spreading of pathology throughout the nervous system, resulting in paralysis and death generally within a few years after diagnosis. The aberrant release and uptake of toxic proteins including SOD1 and TDP-43 and their subsequent propagation, accumulation and deposition in motor neurons may explain such a pattern of pathology. Previous work has suggested that the internalization of aggregates triggers stress granule formation. Given the close association of stress granules and TDP-43, we wondered whether internalisation of SOD1 aggregates stimulated TDP-43 cytosolic aggregate structures. Addition of recombinant mutant G93A SOD1 aggregates to NSC-34 cells was found to trigger a rapid shift of TDP-43 to the cytoplasm where it was still accumulated after 48 h. In addition, SOD1 aggregates also triggered cleavage of TDP-43 into fragments including a 25 kDa fragment. Collectively, this study suggests a role for protein aggregate uptake in TDP-43 pathology.  相似文献   

2.
Apoptosis is an evolutionally conserved cellular suicide mechanism that can be activated in response to a variety of stressful stimuli. Increasing evidence suggests that apoptotic regulation relies on specialized cell death signaling pathways and also integrates diverse signals from additional regulatory circuits, including those of cellular homeostasis. We present a genome-wide RNA interference screen to systematically identify regulators of apoptosis induced by DNA damage in Drosophila melanogaster cells. We identify 47 double- stranded RNA that target a functionally diverse set of genes, including several with a known function in promoting cell death. Further characterization uncovers 10 genes that influence caspase activation upon the removal of Drosophila inhibitor of apoptosis 1. This set includes the Drosophila initiator caspase Dronc and, surprisingly, several metabolic regulators, a candidate tumor suppressor, Charlatan, and an N-acetyltransferase, ARD1. Importantly, several of these genes show functional conservation in regulating apoptosis in mammalian cells. Our data suggest a previously unappreciated fundamental connection between various cellular processes and caspase-dependent cell death.  相似文献   

3.
4.
The RNA-binding protein TDP-43, associated to amyotrophic lateral sclerosis and frontotemporal dementia, regulates the alternative splicing of several genes, including the skipping of TNIK exon 15. TNIK, a genetic risk factor for schizophrenia and causative for intellectual disability, encodes for a Ser/Thr kinase regulating negatively F-actin dynamics.Here we show that in the human adult nervous system TNIK exon 15 is mostly included compared to the other tissues and that, during neuronal differentiation of human induced pluripotent stem cells and of human neuroblastoma cells, TNIK exon 15 inclusion increases independently of TDP-43 protein content. By studying the possible molecular interplay of TDP-43 with brain-specific splicing factors, we found that the neuronal NOVA-1 protein competitively inhibits both TDP-43 and hnRNPA2/B1 skipping activity on TNIK by means of a RNA-dependent interaction and that this competitive mechanism is common to other TDP-43 RNA targets. We also show that the TNIK protein isoforms including/excluding exon 15 differently regulate cell spreading in non-neuronal cells and neuritogenesis in primary cortical neurons.Our data suggest a complex regulation between the ubiquitous TDP-43 and the neuron-specific NOVA-1 splicing factors in the brain that may help better understand the pathobiology of both neurodegenerative diseases and schizophrenia.  相似文献   

5.
6.
7.
Proper DNA replication is critical to maintain genome stability. When the DNA replication machinery encounters obstacles to replication, replication forks stall and the replication stress response is activated. This response includes activation of cell cycle checkpoints, stabilization of the replication fork, and DNA damage repair and tolerance mechanisms. Defects in the replication stress response can result in alterations to the DNA sequence causing changes in protein function and expression, ultimately leading to disease states such as cancer. To identify additional genes that control the replication stress response, we performed a three-parameter, high content, whole genome siRNA screen measuring DNA replication before and after a challenge with replication stress as well as a marker of checkpoint kinase signalling. We identified over 200 replication stress response genes and subsequently analyzed how they influence cellular viability in response to replication stress. These data will serve as a useful resource for understanding the replication stress response.  相似文献   

8.
Hedgehog (Hh) proteins are secreted molecules that function as organizers in animal development. In addition to being palmitoylated, Hh is the only metazoan protein known to possess a covalently-linked cholesterol moiety. The absence of either modification severely disrupts the organization of numerous tissues during development. It is currently not known how lipid-modified Hh is secreted and released from producing cells. We have performed a genome-wide RNAi screen in Drosophila melanogaster cells to identify regulators of Hh secretion. We found that cholesterol-modified Hh secretion is strongly dependent on coat protein complex I (COPI) but not COPII vesicles, suggesting that cholesterol modification alters the movement of Hh through the early secretory pathway. We provide evidence that both proteolysis and cholesterol modification are necessary for the efficient trafficking of Hh through the ER and Golgi. Finally, we identified several putative regulators of protein secretion and demonstrate a role for some of these genes in Hh and Wingless (Wg) morphogen secretion in vivo. These data open new perspectives for studying how morphogen secretion is regulated, as well as provide insight into regulation of lipid-modified protein secretion.  相似文献   

9.
TDP-43: a novel neurodegenerative proteinopathy   总被引:3,自引:0,他引:3  
Over the past decade, it has become clear that there is a significant overlap in the clinical spectrum of frontotemporal lobar degeneration and amyotrophic lateral sclerosis (ALS). The identification of TDP-43 as the major disease protein in the pathology of both frontotemporal lobar degeneration with ubiquitin inclusions and ALS provides the first molecular link for these diseases. Pathological TDP-43 is abnormally phosphorylated, ubiquitinated, and cleaved to generate carboxy-terminal fragments in affected brain regions. The normal nuclear expression of TDP-43 is also reduced leading to the hypothesis that sequestration of TDP-43 in pathological inclusions contributes to disease pathogenesis. Thus, TDP-43 is the newest member of the growing list of neurodegenerative proteinopathies, but unique in that it lacks features of brain amyloidosis.  相似文献   

10.
11.
12.
TDP-43 accumulates in nerve cells of nearly all cases of amyotrophic lateral sclerosis (ALS; the commonest form of motor neuron disease) and in the majority of Tau-negative frontotemporal lobar degeneration (FTLD). There is currently no biochemical test or marker of disease activity for ALS or FTLD, and the clinical diagnosis depends on the opinion of an experienced neurologist. TDP-43 has a key role in the pathogenesis of ALS/FTLD. Measuring TDP-43 in easily accessible biofluids, such as blood or cerebrospinal fluid, might reduce diagnostic delay and offer a readout for use in future drug trials. However, attempts at measuring disease-specific forms of TDP-43 in peripheral biofluids of ALS and FTLD patients have not yielded consistent results, and only some of the pathological biochemical features of TDP-43 found in human brain tissue have been detected in clinical biofluids to date. Reflecting on the molecular pathology of TDP-43, this review provides a critical overview on biofluid studies and future directions to develop a TDP-43-based clinical biomarker for ALS and FTLD.  相似文献   

13.
14.
TAR DNA-binding protein of 43 kDa (TDP-43) is deposited as hyperphosphorylated cytoplasmic and intranuclear inclusions in brains of patients with frontotemporal lobar degeneration with ubiquitinated inclusions and amyotrophic lateral sclerosis. In this study, we identified 29 phosphorylation sites on recombinant TDP-43 that are phosphorylated by casein kinase-1 (CK1). Interestingly, 18 of them were located in the C-terminal glycine-rich region of TDP-43. Our results indicate that CK1-mediated phosphorylation may play a role in the pathogenesis of these diseases.  相似文献   

15.
Evasion from apoptosis is a hallmark of cancer, and recent success using targeted therapeutics underscores the importance of identifying anti-apoptotic survival pathways. Here we utilize RNA interference (RNAi) to systematically screen the kinase and phosphatase component of the human genome. In addition to known kinases, we identified several new survival kinases. Interestingly, numerous phosphatases and associated regulatory subunits contribute to cell survival, revealing a previously unrecognized general role for phosphatases as negative regulators of apoptosis. We also identified a subset of phosphatases with tumour-suppressor-like activity. Finally, RNAi targeting of specific protein kinases sensitizes resistant cells to chemotherapeutic agents. The development of inhibitors that target these kinases or phosphatases may lead to new anti-cancer strategies.  相似文献   

16.
17.
18.
Li HY  Yeh PA  Chiu HC  Tang CY  Tu BP 《PloS one》2011,6(8):e23075
Several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) are characterized by inclusion bodies formed by TDP-43 (TDP). We established cell and transgenic Drosophila models expressing TDP carboxyl terminal fragment (ND251 and ND207), which developed aggregates recapitulating important features of TDP inclusions in ALS/FTLD-U, including hyperphosphorylation at previously reported serine(403,404,409,410) residues, polyubiquitination and colocalization with optineurin. These models were used to address the pathogenic role of hyperphosphorylation in ALS/FTLD-U. We demonstrated that hyperphosphorylation and ubiquitination occurred temporally later than aggregation in cells. Expression of CK2α which phosphorylated TDP decreased the aggregation propensity of ND251 or ND207; this effect could be blocked by CK2 inhibitor DMAT. Mutation of serines(379,403,404,409,410) to alanines (S5A) to eliminate phosphorylation increased the aggregation propensity and number of aggregates of TDP, but mutation to aspartic acids (S5D) or glutamic acids (S5E) to simulate hyperphosphorylation had the opposite effect. Functionally, ND251 or ND207 aggregates decreased the number of neurites of Neuro2a cells induced by retinoic acid or number of cells by MTT assay. S5A mutation aggravated, but S5E mutation alleviated these cytotoxic effects of aggregates. Finally, ND251 or ND251S5A developed aggregates in neurons, and salivary gland of transgenic Drosophila, but ND251S5E did not. Taken together, our data indicate that hyperphosphorylation may represent a compensatory defense mechanism to stop or prevent pathogenic TDP from aggregation. Therefore, enhancement of phosphorylation may serve as an effective therapeutic strategy against ALS/FTLD-U.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease with no cure. Breakthroughs in understanding ALS pathogenesis came with the discovery of dominant mutations in the superoxide dismutase 1 gene (SOD1) and other genes, including the gene encoding transactivating response element DNA binding protein-43 (TDP-43). This has led to the creation of animal models to further our understanding of the disease and identify a number of ALS-causing mechanisms, including mitochondrial dysfunction, protein misfolding and aggregation, oxidative damage, neuronal excitotoxicity, non-cell autonomous effects and neuroinflammation, axonal transport defects, neurotrophin depletion, effects from extracellular mutant SOD1, and aberrant RNA processing. Here we summarise the SOD1 and TDP-43 animal models created to date, report on recent findings supporting the potential mechanisms of ALS pathogenesis, and correlate this understanding with current developments in the clinic.  相似文献   

20.
TDP-43 (transactive- response DNA binding protein) amazes structural biologist as its aberrant ubiquitinated cytosolic inclusions is largely involved in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). An important question in TDP-43 research is to identify the structural region mediating the formation of cytoplasmic pathological aggregates. In this study, we attempted to delineate the aggregation-prone sequences of the structural domain of TDP-43. Here, we investigated the self-assembly of peptides of TDP-43 using aggregation prediction algorithms, Zipper DB and AMYLPRED2. The three aggregation-prone peptides identified were from N-terminal domain (24GTVLLSTV31), and RNA recognition motifs, RRM1 (128GEVLMVQV135) and RRM2 (247DLIIKGIS254). Furthermore, the amyloid fibril forming propensities of these peptides were analyzed through different biophysical techniques and molecular dynamics simulation. Our study shows the different aggregation ability of conserved stretches in structural domain of TDP-43 that will possibly induce full-length aggregation of TDP-43 in vivo. The peptide form RRM2 demonstrates the higher intrinsic amyloid forming propensity and suggests that RRM2 might form the structural core of TDP-43 aggregation seen in vivo. The results of this study would help in designing peptide based inhibitors of TDP-43 aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号