首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Qiu W  Lee ML 《Bioinformation》2006,1(7):251-252
Calculation of the appropriate sample size in planning microarray studies is important because sample collection can be expensive and time-consuming. Sample-size calculation is also a challenging issue for microarray studies because the number of genes is far larger than the number of samples so that traditional methods of sample-size calculation cannot be directly applied. To help investigators answer the question of how many samples are needed in their microarray studies, we developed a user-friendly web-based calculator, SPCalc, for calculating sample size and power for a variety of commonly used experimental designs, including completely randomized treatmentcontrol design, matched-pairs design, multiple-treatment design having an isolated treatment effect, and randomized block design. AVAILABILITY: The web-based calculator SPCalc is publicly available at http://www.biostat.harvard.edu /people/faculty/mltlee/webfront-r.html.  相似文献   

2.
In the management of most chronic conditions characterized by the lack of universally effective treatments, adaptive treatment strategies (ATSs) have grown in popularity as they offer a more individualized approach. As a result, sequential multiple assignment randomized trials (SMARTs) have gained attention as the most suitable clinical trial design to formalize the study of these strategies. While the number of SMARTs has increased in recent years, sample size and design considerations have generally been carried out in frequentist settings. However, standard frequentist formulae require assumptions on interim response rates and variance components. Misspecifying these can lead to incorrect sample size calculations and correspondingly inadequate levels of power. The Bayesian framework offers a straightforward path to alleviate some of these concerns. In this paper, we provide calculations in a Bayesian setting to allow more realistic and robust estimates that account for uncertainty in inputs through the ‘two priors’ approach. Additionally, compared to the standard frequentist formulae, this methodology allows us to rely on fewer assumptions, integrate pre-trial knowledge, and switch the focus from the standardized effect size to the MDD. The proposed methodology is evaluated in a thorough simulation study and is implemented to estimate the sample size for a full-scale SMART of an internet-based adaptive stress management intervention on cardiovascular disease patients using data from its pilot study conducted in two Canadian provinces.  相似文献   

3.
Shieh G 《Biometrics》2000,56(4):1192-1196
A direct extension of the approach described in Self, Mauritsen, and Ohara (1992, Biometrics 48, 31-39) for power and sample size calculations in generalized linear models is presented. The major feature of the proposed approach is that the modification accommodates both a finite and an infinite number of covariate configurations. Furthermore, for the approximation of the noncentrality of the noncentral chi-square distribution for the likelihood ratio statistic, a simplification is provided that not only reduces substantial computation but also maintains the accuracy. Simulation studies are conducted to assess the accuracy for various model configurations and covariate distributions.  相似文献   

4.
Risch and Zhang (1995; Science 268: 1584-9) reported a simple sample size and power calculation approach for the Haseman-Elston method and based their computations on the null hypothesis of no genetic effect. We argue that the more reasonable null hypothesis is that of no recombination. For this null hypothesis, we provide a general approach for sample size and power calculations within the Haseman-Elston framework. We demonstrate the validity of our approach in a Monte-Carlo simulation study and illustrate the differences using data from published segregation analyses on body weight and heritability estimates on carotid artery artherosclerotic lesions.  相似文献   

5.
The determination of the sample size required by a crossover trial typically depends on the specification of one or more variance components. Uncertainty about the value of these parameters at the design stage means that there is often a risk a trial may be under‐ or overpowered. For many study designs, this problem has been addressed by considering adaptive design methodology that allows for the re‐estimation of the required sample size during a trial. Here, we propose and compare several approaches for this in multitreatment crossover trials. Specifically, regulators favor reestimation procedures to maintain the blinding of the treatment allocations. We therefore develop blinded estimators for the within and between person variances, following simple or block randomization. We demonstrate that, provided an equal number of patients are allocated to sequences that are balanced for period, the proposed estimators following block randomization are unbiased. We further provide a formula for the bias of the estimators following simple randomization. The performance of these procedures, along with that of an unblinded approach, is then examined utilizing three motivating examples, including one based on a recently completed four‐treatment four‐period crossover trial. Simulation results show that the performance of the proposed blinded procedures is in many cases similar to that of the unblinded approach, and thus they are an attractive alternative.  相似文献   

6.
The association of a candidate gene with disease can be efficiently evaluated by a case-control study in which allele frequencies are compared for diseased cases and unaffected controls. However, when the distribution of genotypes in the population deviates from Hardy-Weinberg proportions, the frequency of genotypes--rather than alleles--should be compared by the Armitage test for trend. We present formulas for power and sample size for studies that use Armitage's trend test. The formulas make no assumptions about Hardy-Weinberg equilibrium, but do assume random ascertainment of cases and controls, all of whom are independent of one another. We demonstrate the accuracy of the formulas by simulations.  相似文献   

7.
The Cochran-Armitage trend test is commonly used as a genotype-based test for candidate gene association. Corresponding to each underlying genetic model there is a particular set of scores assigned to the genotypes that maximizes its power. When the variance of the test statistic is known, the formulas for approximate power and associated sample size are readily obtained. In practice, however, the variance of the test statistic needs to be estimated. We present formulas for the required sample size to achieve a prespecified power that account for the need to estimate the variance of the test statistic. When the underlying genetic model is unknown one can incur a substantial loss of power when a test suitable for one mode of inheritance is used where another mode is the true one. Thus, tests having good power properties relative to the optimal tests for each model are useful. These tests are called efficiency robust and we study two of them: the maximin efficiency robust test is a linear combination of the standardized optimal tests that has high efficiency and the MAX test, the maximum of the standardized optimal tests. Simulation results of the robustness of these two tests indicate that the more computationally involved MAX test is preferable.  相似文献   

8.
A large number of factors can affect the statistical power and bias of analyses of data from large cohort studies, including misclassification, correlated data, follow-up time, prevalence of the risk factor of interest, and prevalence of the outcome. This paper presents a method for simulating cohorts where individual's risk is correlated within communities, recruitment is staggered over time, and outcomes are observed after different follow-up periods. Covariates and outcomes are misclassified, and Cox proportional hazards models are fit with a community-level frailty term. The effect on study power of varying effect sizes, prevalences, correlation, and misclassification are explored, as well as varying the proportion of controls in nested case-control studies.  相似文献   

9.
10.
Manatunga AK  Chen S 《Biometrics》2000,56(2):616-621
We present a method for computing sample size for cluster-randomized studies involving a large number of clusters with relatively small numbers of observations within each cluster. For multivariate survival data, only the marginal bivariate distribution is assumed to be known. The validity of this assumption is also discussed.  相似文献   

11.
Practical FDR-based sample size calculations in microarray experiments   总被引:5,自引:2,他引:3  
Motivation: Owing to the experimental cost and difficulty inobtaining biological materials, it is essential to considerappropriate sample sizes in microarray studies. With the growinguse of the False Discovery Rate (FDR) in microarray analysis,an FDR-based sample size calculation is essential. Method: We describe an approach to explicitly connect the samplesize to the FDR and the number of differentially expressed genesto be detected. The method fits parametric models for degreeof differential expression using the Expectation–Maximizationalgorithm. Results: The applicability of the method is illustrated withsimulations and studies of a lung microarray dataset. We proposeto use a small training set or published data from relevantbiological settings to calculate the sample size of an experiment. Availability: Code to implement the method in the statisticalpackage R is available from the authors. Contact: jhu{at}mdanderson.org  相似文献   

12.
Adaptive sample size calculations in group sequential trials   总被引:4,自引:0,他引:4  
Lehmacher W  Wassmer G 《Biometrics》1999,55(4):1286-1290
A method for group sequential trials that is based on the inverse normal method for combining the results of the separate stages is proposed. Without exaggerating the Type I error rate, this method enables data-driven sample size reassessments during the course of the study. It uses the stopping boundaries of the classical group sequential tests. Furthermore, exact test procedures may be derived for a wide range of applications. The procedure is compared with the classical designs in terms of power and expected sample size.  相似文献   

13.

Background  

Determining a suitable sample size is an important step in the planning of microarray experiments. Increasing the number of arrays gives more statistical power, but adds to the total cost of the experiment. Several approaches for sample size determination have been developed for expression array studies, but so far none has been proposed for array comparative genomic hybridization (aCGH).  相似文献   

14.
Jiang  Wei  Yu  Weichuan 《BMC genomics》2016,17(1):19-32
Background

Replication study is a commonly used verification method to filter out false positives in genome-wide association studies (GWAS). If an association can be confirmed in a replication study, it will have a high confidence to be true positive. To design a replication study, traditional approaches calculate power by treating replication study as another independent primary study. These approaches do not use the information given by primary study. Besides, they need to specify a minimum detectable effect size, which may be subjective. One may think to replace the minimum effect size with the observed effect sizes in the power calculation. However, this approach will make the designed replication study underpowered since we are only interested in the positive associations from the primary study and the problem of the “winner’s curse” will occur.

Results

An Empirical Bayes (EB) based method is proposed to estimate the power of replication study for each association. The corresponding credible interval is estimated in the proposed approach. Simulation experiments show that our method is better than other plug-in based estimators in terms of overcoming the winner’s curse and providing higher estimation accuracy. The coverage probability of given credible interval is well-calibrated in the simulation experiments. Weighted average method is used to estimate the average power of all underlying true associations. This is used to determine the sample size of replication study. Sample sizes are estimated on 6 diseases from Wellcome Trust Case Control Consortium (WTCCC) using our method. They are higher than sample sizes estimated by plugging observed effect sizes in power calculation.

Conclusions

Our new method can objectively determine replication study’s sample size by using information extracted from primary study. Also the winner’s curse is alleviated. Thus, it is a better choice when designing replication studies of GWAS. The R-package is available at: http://bioinformatics.ust.hk/RPower.html.

  相似文献   

15.

Background  

Before conducting a microarray experiment, one important issue that needs to be determined is the number of arrays required in order to have adequate power to identify differentially expressed genes. This paper discusses some crucial issues in the problem formulation, parameter specifications, and approaches that are commonly proposed for sample size estimation in microarray experiments. Common methods for sample size estimation are formulated as the minimum sample size necessary to achieve a specified sensitivity (proportion of detected truly differentially expressed genes) on average at a specified false discovery rate (FDR) level and specified expected proportion (π 1) of the true differentially expression genes in the array. Unfortunately, the probability of detecting the specified sensitivity in such a formulation can be low. We formulate the sample size problem as the number of arrays needed to achieve a specified sensitivity with 95% probability at the specified significance level. A permutation method using a small pilot dataset to estimate sample size is proposed. This method accounts for correlation and effect size heterogeneity among genes.  相似文献   

16.
False discovery rate, sensitivity and sample size for microarray studies   总被引:10,自引:0,他引:10  
MOTIVATION: In microarray data studies most researchers are keenly aware of the potentially high rate of false positives and the need to control it. One key statistical shift is the move away from the well-known P-value to false discovery rate (FDR). Less discussion perhaps has been spent on the sensitivity or the associated false negative rate (FNR). The purpose of this paper is to explain in simple ways why the shift from P-value to FDR for statistical assessment of microarray data is necessary, to elucidate the determining factors of FDR and, for a two-sample comparative study, to discuss its control via sample size at the design stage. RESULTS: We use a mixture model, involving differentially expressed (DE) and non-DE genes, that captures the most common problem of finding DE genes. Factors determining FDR are (1) the proportion of truly differentially expressed genes, (2) the distribution of the true differences, (3) measurement variability and (4) sample size. Many current small microarray studies are plagued with large FDR, but controlling FDR alone can lead to unacceptably large FNR. In evaluating a design of a microarray study, sensitivity or FNR curves should be computed routinely together with FDR curves. Under certain assumptions, the FDR and FNR curves coincide, thus simplifying the choice of sample size for controlling the FDR and FNR jointly.  相似文献   

17.
Cai J  Zeng D 《Biometrics》2004,60(4):1015-1024
In epidemiologic studies and disease prevention trials, interest often involves estimation of the relationship between some disease endpoints and individual exposure. In some studies, due to the rarity of the disease and the cost in collecting the exposure information for the entire cohort, a case-cohort design, which consists of a small random sample of the whole cohort and all the diseased subjects, is often used. Previous work has focused on analyzing data from the case-cohort design and few have discussed the sample size issues. In this article, we describe two tests for the case-cohort design, which can be treated as a natural generalization of log-rank test in the full cohort design. We derive an explicit form for power/sample size calculation based on these two tests. A number of simulation studies have been used to illustrate the efficiency of the tests for the case-cohort design. An example is provided on how to use the formula.  相似文献   

18.
This paper presents results from simulations investigating the effect of sample size, number of within-subject repeats and relative degree of measurement error on the power and accuracy of test for fluctuating asymmetry (FA). These data confirm that sampling variation of population-level FA-estimates is large and that high sample size is required to obtain reasonably high power when testing for FA or comparing FA levels between populations. The results also clearly show that increasing the number of within-subject repeats can dramatically increase accuracy and power when measurement error is relatively high.  相似文献   

19.
Gene-disease association studies based on case-control designs may often be used to identify candidate polymorphisms (markers) conferring disease risk. If a large number of markers are studied, genotyping all markers on all samples is inefficient in resource utilization. Here, we propose an alternative two-stage method to identify disease-susceptibility markers. In the first stage all markers are evaluated on a fraction of the available subjects. The most promising markers are then evaluated on the remaining individuals in Stage 2. This approach can be cost effective since markers unlikely to be associated with the disease can be eliminated in the first stage. Using simulations we show that, when the markers are independent and when they are correlated, the two-stage approach provides a substantial reduction in the total number of marker evaluations for a minimal loss of power. The power of the two-stage approach is evaluated when a single marker is associated with the disease, and in the presence of multiple disease-susceptibility markers. As a general guideline, the simulations over a wide range of parametric configurations indicate that evaluating all the markers on 50% of the individuals in Stage 1 and evaluating the most promising 10% of the markers on the remaining individuals in Stage 2 provides near-optimal power while resulting in a 45% decrease in the total number of marker evaluations.  相似文献   

20.
Murray S  Cole B 《Biometrics》2000,56(1):173-182
The Quality-Adjusted Time Without Symptoms or Toxicity (Q-TWiST) statistic previously introduced by Glasziou, Simes and Gelber (1990, Statistics in Medicine 9, 1259-1276) combines toxicity, disease-free survival, and overall survival information in assessing the impact of treatments on the lives of patients. This methodology has received positive reviews from clinicians as intuitive and useful, but to date, the variance of this statistic has remained unspecified. We review aspects of the Q-TWiST method for analyzing clinical trial data, extend the method to accommodate multiple treatment arms, and provide closed-form asymptotic variance formulas. We also provide a framework for designing Q-TWiST clinical trials with sample sizes determined using the derived asymptotic variance formulas. Trials currently collecting quality of life data did not have the benefit of these sample size calculation techniques in designing their studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号