首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing evidence supports a connection between cancer and metabolism and emphasizes the need to understand how tumors respond to the metabolic microenvironment and how tumor cell metabolism is regulated. The insulin receptor (IR) and its close family member the insulin-like growth factor-1 receptor (IGF-1R) mediate the cellular response to insulin in normal cells and their function is tightly regulated to maintain metabolic homeostasis. These receptors are also expressed on tumor cells and their expression correlates with tumor progression and poor prognosis. Understanding how the IR/IGF-1R pathway functions in tumors is increasing in importance as the efficacy of drugs that target metabolic pathways, such as metformin, are investigated in prospective clinical trials. This review will focus on key signaling intermediates of the IR and IGF-1R, the Insulin Receptor Substrate (IRS) proteins, with an emphasis on IRS-2, and discuss how these adaptor proteins play a pivotal role at the intersection of metabolism and cancer.  相似文献   

2.
The pleckstrin homology (PH) domain of the insulin receptor substrate-1 (IRS-1) plays a role in directing this molecule to the insulin receptor, thereby regulating its tyrosine phosphorylation. In this work, the role of the PH domain in subsequent signaling was studied by constructing constitutively active forms of IRS-1 in which the inter-SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase was fused to portions of the IRS-1 molecule. Chimeric molecules containing the PH domain were found to activate the downstream response of stimulating the Ser/Thr kinase Akt. A chimera containing point mutations in the PH domain that abolished the ability of this domain to bind phosphatidylinositol 4,5-bisphosphate prevented these molecules from activating Akt. These mutations also decreased by about 70% the amount of the constructs present in a particulate fraction of the cells. These results indicate that the PH domain of IRS-1, in addition to directing this protein to the receptor for tyrosine phosphorylation, functions in the ability of this molecule to stimulate subsequent responses. Thus, compromising the function of the PH domain, e.g. in insulin-resistant states, could decrease both the ability of IRS-1 to be tyrosine phosphorylated by the insulin receptor and to link to subsequent downstream targets.  相似文献   

3.
Grb10 has been proposed to inhibit or activate insulin signaling, depending on cellular context. We have investigated the mechanism by which full-length hGrb10gamma inhibits signaling through the insulin receptor substrate (IRS) proteins. Overexpression of hGrb10gamma in CHO/IR cells and in differentiated adipocytes significantly reduced insulin-stimulated tyrosine phosphorylation of IRS-1 and IRS-2. Inhibition occurred rapidly and was sustained for 60 min during insulin stimulation. In agreement with inhibited signaling through the IRS/PI 3-kinase pathway, we found hGrb10gamma to both delay and reduce phosphorylation of Akt at Thr(308) and Ser(473) in response to insulin stimulation. Decreased phosphorylation of IRS-1/2 may arise from impaired catalytic activity of the receptor, since hGrb10gamma directly associates with the IR kinase regulatory loop. However, yeast tri-hybrid studies indicated that full-length Grb10 blocks association between IRS proteins and IR, and that this requires the SH2 domain of Grb10. In cells, hGrb10gamma inhibited insulin-stimulated IRS-1 tyrosine phosphorylation in a dose-dependent manner, but did not affect IR catalytic activity toward Tyr(972) in the juxtamembrane region and Tyr(1158/1162/1163) in the regulatory domain. We conclude that binding of hGrb10gamma to IR decreases signaling through the IRS/PI 3-kinase/AKT pathway by physically blocking IRS access to IR.  相似文献   

4.
Increasing evidence supports a connection between cancer and metabolism and emphasizes the need to understand how tumors respond to the metabolic microenvironment and how tumor cell metabolism is regulated. The insulin receptor (IR) and its close family member the insulin-like growth factor-1 receptor (IGF-1R) mediate the cellular response to insulin in normal cells and their function is tightly regulated to maintain metabolic homeostasis. These receptors are also expressed on tumor cells and their expression correlates with tumor progression and poor prognosis. Understanding how the IR/IGF-1R pathway functions in tumors is increasing in importance as the efficacy of drugs that target metabolic pathways, such as metformin, are investigated in prospective clinical trials. This review will focus on key signaling intermediates of the IR and IGF-1R, the Insulin Receptor Substrate (IRS) proteins, with an emphasis on IRS-2, and discuss how these adaptor proteins play a pivotal role at the intersection of metabolism and cancer.Key words: IRS proteins, insulin receptor, IGF-1 receptor, metabolism, cancer, metformin  相似文献   

5.
Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.  相似文献   

6.
Although we and others have generated IRS-2 knock-out (IRS-2(-/-)) mice, significant differences were seen between the two lines of IRS-2(-/-) mice in the severity of diabetes and alterations of beta-cell mass. It has been reported that although IRS-1 and IRS-3 knock-out mice showed normal blood glucose levels, IRS-1/IRS-3 double knock-out mice exhibited marked hyperglycemia. Thus, IRS-1 and IRS-3 compensate each other's functions in maintaining glucose homeostasis. To assess the effect of genetic background and also ablation of IRS-3 on IRS-2(-/-), we generated IRS-2/IRS-3 double knock-out (IRS-2(-/-)IRS-3(-/-)) mice by crossing IRS-3(-/-) mice (129/Sv and C57Bl/6 background) with our IRS-2(-/-) mice (CBA and C57Bl/6 background). Intercrosses of IRS-2(+/-)IRS-3(+/-) mice yielded nine genotypes, and all of them including IRS-2(-/-)IRS-3(-/-) mice were apparently healthy and showed normal growth. However, at 10-20 weeks of age, 20-30% mice carrying a null mutation for the IRS-2 gene, irrespective of the IRS-3 genotype, developed diabetes. When mice with diabetes were excluded from the analysis of glucose and insulin tolerance test, IRS-2(-/-)IRS-3(-/-) showed a degree of glucose intolerance and insulin resistance similar to those of IRS-2(-/-) mice. Both IRS-2(-/-) and IRS-2(-/-)IRS-3(-/-) mice had moderately reduced beta-cell mass despite having insulin resistance. Insulin-positive beta-cells were decreased to nearly zero in IRS-2(-/-) mice with diabetes. Although Pdx1 and glucose transporter 2 expressions were essentially unaltered in islets from IRS-2(-/-) mice without diabetes, they were dramatically decreased in IRS-2(-/-) mice with diabetes. Taken together, these observations indicate that IRS-3 does not play a role compensating for the loss of IRS-2 in maintaining glucose homeostasis and that the severity of diabetes in IRS-2(-/-) mice depends upon genetic background, suggesting the existence of modifier gene(s) for diabetes in mice of the 129/Sv genetic strain.  相似文献   

7.
Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1−/− and IRS-2−/− mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins.  相似文献   

8.
The insulin receptor is a transmembrane tyrosine kinase that is essential for mediating multiple intracellular signalling cascades that lead ultimately to the biological actions of insulin Tyrosine phosphorylation o f the cytosolic proteins insulin receptor substrate 1 and 2 (IRS1 and IRS2) produces protein 'scaffolding' for the assembly of effector proteins containing Src homology 2 (SH2) domains, thereby generating multisubunit signalling complexes. Although IRS1 was originally isolated as a specific insulin receptor substrate, both IRS1 and IRS2 appear to play a broader role, functioning also as proximal substrates in growth hormone and cytokine receptor signalling. Current data establish IRS1 and IRS2 as critical effectors integrating various cell-type-specific signals into distinct, but overlapping, biological responses.  相似文献   

9.
Mammalian target of rapamycin (mTOR) kinase responds to growth factors, nutrients and cellular energy status and is a central controller of cellular growth. mTOR exists in two multiprotein complexes that are embedded into a complex signalling network. Adenosine monophosphate-dependent kinase (AMPK) is activated by energy deprivation and shuts off adenosine 5'-triphosphate (ATP)-consuming anabolic processes, in part via the inactivation of mTORC1. Surprisingly, we observed that AMPK not only responds to energy deprivation but can also be activated by insulin, and is further induced in mTORC1-deficient cells. We have recently modelled the mTOR network, covering both mTOR complexes and their insulin and nutrient inputs. In the present study we extended the network by an AMPK module to generate the to date most comprehensive data-driven dynamic AMPK-mTOR network model. In order to define the intersection via which AMPK is activated by the insulin network, we compared simulations for six different hypothetical model structures to our observed AMPK dynamics. Hypotheses ranking suggested that the most probable intersection between insulin and AMPK was the insulin receptor substrate (IRS) and that the effects of canonical IRS downstream cues on AMPK would be mediated via an mTORC1-driven negative-feedback loop. We tested these predictions experimentally in multiple set-ups, where we inhibited or induced players along the insulin-mTORC1 signalling axis and observed AMPK induction or inhibition. We confirmed the identified model and therefore report a novel connection within the insulin-mTOR-AMPK network: we conclude that AMPK is positively regulated by IRS and can be inhibited via the negative-feedback loop.  相似文献   

10.
Insulin receptor substrate (Irs) mediates metabolic actions of insulin. Here, we show that hepatic Irs1 and Irs2 function in a distinct manner in the regulation of glucose homeostasis. The PI3K activity associated with Irs2 began to increase during fasting, reached its peak immediately after refeeding, and decreased rapidly thereafter. By contrast, the PI3K activity associated with Irs1 began to increase a few hours after refeeding and reached its peak thereafter. The data indicate that Irs2 mainly functions during fasting and immediately after refeeding, and Irs1 functions primarily after refeeding. In fact, liver-specific Irs1-knockout mice failed to exhibit insulin resistance during fasting, but showed insulin resistance after refeeding; conversely, liver-specific Irs2-knockout mice displayed insulin resistance during fasting but not after refeeding. We propose the concept of the existence of a dynamic relay between Irs1 and Irs2 in hepatic insulin signaling during fasting and feeding.  相似文献   

11.
Colorectal cancer (CRC) is associated with lifestyle factors that affect insulin/IGF signaling, of which the insulin receptor substrate 1 (IRS1) is a key transducer. We investigated expression, localization and pathologic correlations of IRS1 in cancer-uninvolved colonic epithelium, primary CRCs with paired liver metastases and in vitro polarizing Caco2 and HT29 cells. IRS1 mRNA and protein resulted higher, relative to paired mucosa, in adenomas of familial adenomatous polyposis patients and in CRCs that overexpressed c-MYC, ß-catenin, InsRß, and IGF1R. Analysis of IRS1 immunostaining in 24 cases of primary CRC with paired colonic epithelium and hepatic metastasis showed that staining intensity was significantly higher in metastases relative to both primary CRC (P<0.01) and colonic epithelium (P<0.01). Primary and metastatic CRCs, compared to colonic epithelium, contained significantly higher numbers of IRS1-positive cells (P = 0.013 and P = 0.014, respectively). Pathologic correlations in 163 primary CRCs revealed that diffuse IRS1 staining was associated with tumors combining differentiated phenotype and aggressive markers (high Ki67, p53, and ß-catenin). In Caco 2 IRS1 and InsR were maximally expressed after polarization, while IGF1R was highest in pre-polarized cells. No nuclear IRS1 was detected, while, with polarization, phosphorylated IRS1 (pIRS1) shifted from the lateral to the apical plasma membrane and was expressed in surface cells only. In HT29, that carry mutations constitutively activating survival signaling, IRS1 and IGF1R decreased with polarization, while pIRS1 localized in nuclear spots throughout the course. Overall, these data provide evidence that IRS1 is modulated according to CRC differentiation, and support a role of IRS1 in CRC progression and liver metastatization.  相似文献   

12.

Background

Dysregulation of microRNA (miRNA) expression in various tissues and body fluids has been demonstrated to be associated with several diseases, including Type 2 Diabetes mellitus (T2D). Here, we compare miRNA expression profiles in different tissues (pancreas, liver, adipose and skeletal muscle) as well as in blood samples from T2D rat model and highlight the potential of circulating miRNAs as biomarkers of T2D. In parallel, we have examined the expression profiles of miRNAs in blood samples from Impaired Fasting Glucose (IFG) and T2D male patients.

Methodology/Principal Findings

Employing miRNA microarray and stem-loop real-time RT-PCR, we identify four novel miRNAs, miR-144, miR-146a, miR-150 and miR-182 in addition to four previously reported diabetes-related miRNAs, miR-192, miR-29a, miR-30d and miR-320a, as potential signature miRNAs that distinguished IFG and T2D. Of these microRNAs, miR-144 that promotes erythropoiesis has been found to be highly up-regulated. Increased circulating level of miR-144 has been found to correlate with down-regulation of its predicted target, insulin receptor substrate 1 (IRS1) at both mRNA and protein levels. We could also experimentally demonstrate that IRS1 is indeed the target of miR-144.

Conclusion

We demonstrate that peripheral blood microRNAs can be developed as unique biomarkers that are reflective and predictive of metabolic health and disorder. We have also identified signature miRNAs which could possibly explain the pathogenesis of T2D and the significance of miR-144 in insulin signaling.  相似文献   

13.
Mice made insulin receptor substrate 1 (IRS-1) deficient by targeted gene knockout exhibit growth retardation and abnormal glucose metabolism due to resistance to the actions of insulin-like growth factor 1 (IGF-1) and insulin (E. Araki et al., Nature 372:186-190, 1994; H. Tamemoto et al., Nature 372:182-186, 1994). Embryonic fibroblasts and 3T3 cell lines derived from IRS-1-deficient embryos exhibit no IGF-1-stimulated IRS-1 phosphorylation or IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity but exhibit normal phosphorylation of IRS-2 and Shc and normal IRS-2-associated PI 3-kinase activity. IRS-1 deficiency results in a 70 to 80% reduction in IGF-1-stimulated cell growth and parallel decreases in IGF-1-stimulated S-phase entry, PI 3-kinase activity, and induction of the immediate-early genes c-fos and egr-1 but unaltered activation of the mitogen-activated protein kinases ERK 1 and ERK 2. Expression of IRS-1 in IRS-1-deficient cells by retroviral gene transduction restores IGF-1-stimulated mitogenesis, PI 3-kinase activation, and c-fos and egr-1 induction in proportion to the level of reconstitution. Increasing the level of IRS-2 in these cells by using a retrovirus reconstitutes IGF-1 activation of PI 3-kinase and immediate-early gene expression to the same degree as expression of IRS-1; however, IRS-2 overexpression has only a minor effect on IGF-1 stimulation of cell cycle progression. These results indicate that IRS-1 is not necessary for activation of ERK 1 and ERK 2 and that activation of ERK 1 and ERK 2 is not sufficient for IGF-1-stimulated activation of c-fos and egr-1. These data also provide evidence that IRS-1 and IRS-2 are not functionally interchangeable signaling intermediates for stimulation of mitogenesis despite their highly conserved structure and many common functions such as activating PI 3-kinase and early gene expression.  相似文献   

14.
Inflammation associates with peripheral insulin resistance, which dysregulates nutrient homeostasis and leads to diabetes. Inflammation induces the expression of SOCS proteins. We show that SOCS1 or SOCS3 targeted IRS1 and IRS2, two critical signaling molecules for insulin action, for ubiquitin-mediated degradation. SOCS1 or SOCS3 bound both recombinant and endogenous IRS1 and IRS2 and promoted their ubiquitination and subsequent degradation in multiple cell types. Mutations in the conserved SOCS box of SOCS1 abrogated its interaction with the elongin BC ubiquitin-ligase complex without affecting its binding to IRS1 or IRS2. The SOCS1 mutants also failed to promote the ubiquitination and degradation of either IRS1 or IRS2. Adenoviral-mediated expression of SOCS1 in mouse liver dramatically reduced hepatic IRS1 and IRS2 protein levels and caused glucose intolerance; by contrast, expression of the SOCS1 mutants had no effect. Thus, SOCS-mediated degradation of IRS proteins, presumably via the elongin BC ubiquitin-ligase, might be a general mechanism of inflammation-induced insulin resistance, providing a target for therapy.  相似文献   

15.
Mouse embryonic stem (mES) cells are pluripotent cells that can be propagated in vitro with leukemia inhibitory factor (LIF) and serum. Intracellular signaling by LIF is principally mediated by activation of STAT-3, although additional pathways for self-renewal have been described. Here, we identified a novel role for Insulin receptor substrate-1 (IRS-1) as a critical factor in mES cells self-renewal and differentiation. IRS-1 is expressed and tyrosyl phosphorylated during mES cells self-renewal. Differentiation of mES cells, by LIF withdrawal, is associated with a marked reduction in IRS-1 expression. Targeting of IRS-1 by si-IRS-1 results in a severe reduction of Oct-4 protein expression and alkaline phosphatase activity, markers of undifferentiated mES cells. IRS-1 targeting does not interfere with LIF-induced STAT-3 phosphorylation, but negatively affects protein kinase B (PKB/AKT) and glycogen synthase kinase-3 (GSK-3beta) phosphorylation, which are downstream effectors of the LIF-mediated PI3K signaling cascade. Targeting of IRS-1 also results in a marked down regulation of Id-1 and Id-2 proteins expression, which are important components for self-renewal of ES cells. Conversely, over expression of IRS-1 inhibits mES cell differentiation. Taken together, these results suggest that expression and activity of IRS-1 are critical to the maintenance of the self-renewal program in mES cells.  相似文献   

16.
Vascular endothelial growth factor (VEGF) plays an essential role in the initiation and regulation of angiogenesis-a crucial component of wound healing and cancer growth. Prostaglandins (PGs) stimulate angiogenesis but the precise mechanisms of their pro-angiogenic actions remain unexplained. We investigated whether prostaglandin E(2) (PGE(2)) can induce VEGF expression in rat gastric microvascular endothelial cells (RGMEC) and the signaling pathway(s) involved. We demonstrated that PGE(2) significantly increased ERK2 and JNK1 activation and VEGF mRNA and protein expression. Incubation of RGMEC with PD 98059 (MEK kinase inhibitor) significantly reduced PGE(2)-induced ERK2 activity, VEGF mRNA and protein expression. Furthermore, PD 98059 treatment almost completely abolished JNK1 activation. Our data suggest that PGE(2)-stimulates VEGF expression in RGMEC via transactivation of JNK1 by ERK2. One potential implication of this finding is that increased PG levels in cancers could facilitate tumor growth by stimulating VEGF synthesis and angiogenesis.  相似文献   

17.
Nonenzymatic glycation is increased in diabetes and leads to increased levels of glycated proteins. Most studies have focused on the role of glycation products in vascular complications. Here, we have investigated the action of human glycated albumin (HGA) on insulin signaling in L6 skeletal muscle cells. Exposure of these cells to HGA inhibited insulin-stimulated glucose uptake and glycogen synthase activity by 95 and 80%, respectively. These effects were time- and dose-dependent, reaching a maximum after 12 h incubation with 0.1 mg/ml HGA. In contrast, exposure of the cells to HGA had no effect on thymidine incorporation. Further, HGA reduced insulin-stimulated serine phosphorylation of PKB and GSK3, but did not alter ERK1/2 activation. HGA did not affect either insulin receptor kinase activity or insulin-induced Shc phosphorylation on tyrosine. In contrast, insulin-dependent IRS-1 and IRS-2 tyrosine phosphorylation was severely reduced in cells preincubated with HGA for 24 h. Insulin-stimulated association of PI3K with IRS-1 and IRS-2, and PI3K activity were reduced by HGA in parallel with the changes in IRS tyrosine phosphorylation, while Grb2-IRS association was unchanged. In L6 myotubes, exposure to HGA increased PKC activity by 2-fold resulting in a similar increase in Ser/Thr phosphorylation of IRS-1 and IRS-2. These phosphorylations were blocked by the PKC inhibitor bisindolylmaleimide (BDM). BDM also blocked the action of HGA on insulin-stimulated PKB and GSK3 alpha. Simultaneously, BDM rescued insulin-stimulation of glucose uptake and glycogen synthase activity in cells exposed to HGA. The use of antibodies specific to PKC isoforms shows that this effect appears to be mediated by activated PKC alpha, independent of reactive oxygen species production. In summary, in L6 skeletal muscle cells, exposure to HGA leads to insulin resistance selectively in glucose metabolism with no effect on growth-related pathways regulated by the hormone.  相似文献   

18.
The mammalian target of rapamycin (mTOR) is essential for skeletal myogenesis through controlling distinct cellular pathways. The importance of the canonical mTOR complex 1 signaling components, including raptor, S6K1, and Rheb, had been suggested in muscle maintenance, growth, and metabolism. However, the role of those components in myogenic differentiation is not entirely clear. In this study we have investigated the functions of raptor, S6K1, and Rheb in the differentiation of C2C12 mouse myoblasts. We find that although mTOR knockdown severely impairs myogenic differentiation as expected, the knockdown of raptor, as well as Rheb, enhances differentiation. Consistent with a negative role for these proteins in myogenesis, overexpression of raptor or Rheb inhibits C2C12 differentiation. On the other hand, neither knockdown nor overexpression of S6K1 has any effect. Moreover, the enhanced differentiation elicited by raptor or Rheb knockdown is accompanied by increased Akt activation, elevated IRS1 protein levels, and decreased Ser-307 (human Ser-312) phosphorylation on IRS1. Finally, IRS1 knockdown eliminated the enhancement in differentiation elicited by raptor or Rheb knockdown, suggesting that IRS1 is a critical mediator of the myogenic functions of raptor and Rheb. In conclusion, the Rheb-mTOR/raptor pathway negatively regulates myogenic differentiation by suppressing IRS1-PI3K-Akt signaling. These findings underscore the versatility of mTOR signaling in biological regulations and implicate the existence of novel mTOR complexes and/or signaling mechanism in skeletal myogenesis.  相似文献   

19.
Insulin-like growth factors (IGFs) are well known to play essential roles in enhancement of myogenic differentiation. In this report we showed that initial IGF-I signal activation but long-term IGF-1 signal termination are required for myogenic differentiation. L6 myoblast stably transfected with myc-epitope tagged insulin receptor substrate-1, myc-IRS-1 (L6-mIRS1) was unable to differentiate into myotubes, indicating that IRS-1 constitutive expression inhibited myogenesis. To elucidate the molecular mechanisms underlying myogenic inhibition, IGF-I signaling was examined. IGF-I treatment of control L6 cells for 18 h resulted in a marked suppression of IGF-I stimulated IRS-1 association with the p85 PI 3-kinase and suppression of activation of Akt that correlated with a down regulation of IRS-1 protein. L6-mIRS1 cells, in contrast, had sustained high levels of IRS-1 protein following 18 h of IGF-I treatment with persistent p85 PI 3-kinase association with IRS-1, Akt phosphorylation and phosphorylation of the downstream Akt substrate, Foxo1. Consistent with Foxo1 phosphorylation, Foxo1 protein was excluded from the nuclei in L6-mIRS1 cells, whereas Foxo1 was localized in the nuclei in control L6 cells during induction of differentiation. In addition, L6 cells stably expressing a dominant-interfering form of Foxo1, Δ256Foxo1 (L6-Δ256Foxo1) were unable to differentiate into myotubes. Together, these data demonstrate that IGF-I regulation of Foxo1 nuclear localization is essential for the myogenic program in L6 cells but that persistent activation of IGF-1 signaling pathways results in a negative feedback to prevent myogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号