首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disease-associated prion protein oligomers inhibit the 26S proteasome   总被引:7,自引:0,他引:7  
The mechanism of cell death in prion disease is unknown but is associated with the production of a misfolded conformer of the prion protein. We report that disease-associated prion protein specifically inhibits the proteolytic beta subunits of the 26S proteasome. Using reporter substrates, fluorogenic peptides, and an activity probe for the beta subunits, this inhibitory effect was demonstrated in pure 26S proteasome and three different cell lines. By challenge with recombinant prion and other amyloidogenic proteins, we demonstrate that only the prion protein in a nonnative beta sheet conformation inhibits the 26S proteasome at stoichiometric concentrations. Preincubation with an antibody specific for aggregation intermediates abrogates this inhibition, consistent with an oligomeric species mediating this effect. We also present evidence for a direct relationship between prion neuropathology and impairment of the ubiquitin-proteasome system (UPS) in prion-infected UPS-reporter mice. Together, these data suggest a mechanism for intracellular neurotoxicity mediated by oligomers of misfolded prion protein.  相似文献   

2.
Naked mole-rats are highly social and strictly subterranean rodents that live in large communal colonies in sealed and chronically oxygen-depleted burrows. Brain slices from naked mole-rats show extreme tolerance to hypoxia compared to slices from other mammals, as indicated by maintenance of synaptic transmission under more hypoxic conditions and three fold longer latency to anoxic depolarization. A key factor in determining whether or not the cellular response to hypoxia is reversible or leads to cell death may be the elevation of intracellular calcium concentration. In the present study, we used fluorescent imaging techniques to measure relative intracellular calcium changes in CA1 pyramidal cells of hippocampal slices during hypoxia. We found that calcium accumulation during hypoxia was significantly and substantially attenuated in slices from naked mole-rats compared to slices from laboratory mice. This was the case for both neonatal (postnatal day 6) and older (postnatal day 20) age groups. Furthermore, while both species demonstrated more calcium accumulation at older ages, the older naked mole-rats showed a smaller calcium accumulation response than even the younger mice. A blunted intracellular calcium response to hypoxia may contribute to the extreme hypoxia tolerance of naked mole-rat neurons. The results are discussed in terms of a general hypothesis that a very prolonged or arrested developmental process may allow adult naked mole-rat brain to retain the hypoxia tolerance normally only seen in neonatal mammals.  相似文献   

3.
4.
African mole-rats are subterranean rodents, which rarely if ever leave the safety of their burrow systems. The environment of the burrows is humid, with relatively stable temperatures, and may have a hypoxic and hypercapnic atmosphere. One of crucial problems related to the subterranean way of life in mammals is avoidance of overheating, because traditional mammalian cooling mechanisms are not effective under high humidity. In African mole-rats, a variety of adaptations have evolved in response to this and other challenges of the underground ecotope. Traditionally, attention has been devoted mainly to the naked mole-rat Heterocephalus glaber, which became popular as a result of its eusociality and absence of fur, both being unique phenomena in small mammals. Despite more recent research, information on other species is still relatively limited and patchy. I review the results of studies on African mole-rats that are relevant for the understanding of their energetics and thermal biology. Attention is paid to the parameters of the burrow environment, which represent the main selection pressures shaping their physiology. In addition, an overview is given of the morphological, physiological and behavioural adaptations helping mole-rats to face temperature extremes, mechanisms by which they deal with a surplus of metabolic heat and how changes in ambient temperature influence their daily activity. The naked mole-rat is compared to its furred relatives to determine whether this species is really exceptional from the point of thermal biology. An ordination analysis was conducted using published data on mole-rat body temperature, thermoneutral zone, resting metabolic rate and thermal conductance. Most of the variability in these characteristics was found to be explained by body mass, followed by temperature characteristics of climate, but not precipitation, of the species distributional ranges. This analysis shows that the naked mole-rat is comparable to the other mole-rat species in these physiological characteristics.  相似文献   

5.
Chronic neurodegenerative diseases are characterized by the accumulation of aggregated protein species, and functional impairment of the ubiquitin proteasome system has been hypothesized to contribute to neuronal cell loss. Decreased proteolytic activity of the 20S proteasome has been shown postmortem in crude brain lysates from Alzheimer's disease (AD) patients. In the present study, we demonstrate, however, that catalytic activity of the 20S proteasome increases during chromatographic purification from AD brains as compared with age-matched controls. By two-dimensional difference gel electrophoresis we detected pI shifts in several proteasome subunits in AD samples pointing to differential post-translational modifications. Moreover, we identified N-terminal acetylation and dephosphorylation of subunit alpha7 in AD by tandem mass spectrometry. Thus, reduced peptidase activity in AD brain extracts is not an intrinsic property of the 20S proteasome, but may be resulting from the presence of endogenous inhibitory proteins or substrates. Post-translational modifications of non-catalytic subunits in situ may contribute to the trend towards enhanced hydrolytic activity of the isolated 20S proteasome after removal of the endogenous inhibitors.  相似文献   

6.
Moumen A  Virard I  Raoul C 《PloS one》2011,6(10):e26066
Cellular homeostasis relies on a tight control of protein synthesis, folding and degradation, in which the endoplasmic reticulum (ER) quality control and the ubiquitin proteasome system (UPS) have an instrumental function. ER stress and aberrant accumulation of misfolded proteins represent a pathological signature of amyotrophic lateral sclerosis (ALS), a fatal paralytic disorder caused by the selective degeneration of motoneurons in the brain and spinal cord. Mutations in the ER-resident protein VAPB have been associated with familial forms of the disease. ALS-linked mutations cause VAPB to form cytoplasmic aggregates. We previously demonstrated that viral-mediated expression of both wildtype and mutant human VAPB (hVAPB) leads to an ER stress response that contributes to the selective death of motoneurons. However, the mechanisms behind ER stress, defective UPS and hVAPB-associated motoneuron degeneration remain elusive. Here, we show that the overexpression of wildtype and mutated hVAPB, which is found to be less stable than the wildtype protein, leads to the abnormal accumulation of ubiquitin and ubiquitin-like protein conjugates in non-human primate cells. We observed that overexpression of both forms of hVAPB elicited an ER stress response. Treatment of wildtype and mutated hVAPB expressing cells with the ER stress inhibitor salubrinal diminished the burden of ubiquitinated proteins, suggesting that ER stress contributes to the impairment of proteasome function. We also found that both wildtype and mutated hVAPB can associate with the 20S proteasome, which was found to accumulate at the ER with wildtype hVAPB or in mutant hVAPB aggregates. Our results suggest that ER stress and corruption of the proteasome function might contribute to the aberrant protein homeostasis associated with hVAPB.  相似文献   

7.
8.

Background

African mole-rats (Bathyergidae, Rodentia) exhibit a wide range of social structures, from solitary to eusocial. We previously found a lack of sex differences in the external genitalia and morphology of the perineal muscles associated with the phallus in the eusocial naked mole-rat. This was quite surprising, as the external genitalia and perineal muscles are sexually dimorphic in all other mammals examined. We hypothesized that the lack of sex differences in naked mole-rats might be related to their unusual social structure.

Methodology/Principal Findings

We compared the genitalia and perineal muscles in three African mole-rat species: the naked mole-rat, the solitary silvery mole-rat, and the Damaraland mole-rat, a species considered to be eusocial, but with less reproductive skew than naked mole-rats. Our findings support a relationship between social structure, mating system, and sexual differentiation. Naked mole-rats lack sex differences in genitalia and perineal morphology, silvery mole-rats exhibit sex differences, and Damaraland mole-rats are intermediate.

Conclusions/Significance

The lack of sex differences in naked mole-rats is not an attribute of all African mole-rats, but appears to have evolved in relation to their unusual social structure and reproductive biology.  相似文献   

9.
After the discovery of eusociality in the naked mole-rat, it was proposed that inbreeding and high colony relatedness in this species were the major underlying factors driving cooperative breeding in African molerats. By contrast, field and laboratory studies of the eusocial Damaraland mole-rat (Cryptomys damarensis) have raised the possibility that this species is an obligate outbreeder, although the build-up of inbreeding over several generations could still occur. Using microsatellite markers, we show that most breeding pairs in wild colonies of the Damaraland mole-rat are indeed unrelated (R = 0.02 +/- 0.04) and that mean colony relatedness (R = 0.46 +/- 0.01), determined across 15 colonies from three separate populations, is little more than half that previously identified in naked mole-rats. This finding demonstrates that normal familial levels of relatedness are sufficient for the occurrence of eusociality in mammals. Variation in the mean colony relatedness among populations provides support both for the central role played by ecological constraints in cooperative breeding and for the suggestion that inbreeding in naked mole-rats is a response to extreme constraints on dispersal. Approaches that determine the relative importance of an array of extrinsic factors in driving social evolution in African mole-rats are now required.  相似文献   

10.
In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes “normal” mammalian nociception.  相似文献   

11.
SKN-1, the Caenorhabditis elegans Nrf1/2/3 ortholog, promotes both oxidative stress resistance and longevity. SKN-1 responds to oxidative stress by upregulating genes that detoxify and defend against free radicals and other reactive molecules, a SKN-1/Nrf function that is both well-known and conserved. Here we show that SKN-1 has a broader and more complex role in maintaining cellular stress defenses. SKN-1 sustains expression and activity of the ubiquitin-proteasome system (UPS) and coordinates specific protective responses to perturbations in protein synthesis or degradation through the UPS. If translation initiation or elongation is impaired, SKN-1 upregulates overlapping sets of cytoprotective genes and increases stress resistance. When proteasome gene expression and activity are blocked, SKN-1 activates multiple classes of proteasome subunit genes in a compensatory response. SKN-1 thereby maintains UPS activity in the intestine in vivo under normal conditions and promotes survival when the proteasome is inhibited. In contrast, when translation elongation is impaired, SKN-1 does not upregulate proteasome genes, and UPS activity is then reduced. This indicates that UPS activity depends upon presence of an intact translation elongation apparatus; and it supports a model, suggested by genetic and biochemical studies in yeast, that protein synthesis and degradation may be coupled processes. SKN-1 therefore has a critical tissue-specific function in increasing proteasome gene expression and UPS activity under normal conditions, as well as when the UPS system is stressed, but mounts distinct responses when protein synthesis is perturbed. The specificity of these SKN-1-mediated stress responses, along with the apparent coordination between UPS and translation elongation activity, may promote protein homeostasis under stress or disease conditions. The data suggest that SKN-1 may increase longevity, not only through its well-documented role in boosting stress resistance, but also through contributing to protein homeostasis.  相似文献   

12.
The naked mole-rat maintains robust proteostasis and high levels of proteasome-mediated proteolysis for most of its exceptional (~ 31 years) life span. Here, we report that the highly active proteasome from the naked mole-rat liver resists attenuation by a diverse suite of proteasome-specific small molecule inhibitors. Moreover, mouse, human, and yeast proteasomes exposed to the proteasome-depleted, naked mole-rat cytosolic fractions, recapitulate the observed inhibition resistance, and mammalian proteasomes also show increased activity. Gel filtration coupled with mass spectrometry and atomic force microscopy indicates that these traits are supported by a protein factor that resides in the cytosol. This factor interacts with the proteasome and modulates its activity. Although Heat shock protein 72 kDa (HSP72) and Heat shock protein 40 kDa (Homolog of bacterial DNAJ1) (HSP40(Hdj1)) are among the constituents of this factor, the observed phenomenon, such as increasing peptidase activity and protecting against inhibition cannot be reconciled with any known chaperone functions. This novel function may contribute to the exceptional protein homeostasis in the naked mole-rat and allow it to successfully defy aging.  相似文献   

13.
Analysis of Drosophila 26 S proteasome using RNA interference.   总被引:9,自引:0,他引:9  
We have utilized double-stranded RNA interference (RNAi) to examine the effects of reduced expression of individual subunits of the 26 S proteasome in Drosophila S2 cells. RNAi significantly decreased mRNA and protein levels of targeted subunits of both the core 20 S proteasome and the PA700 regulatory complex. Cells deficient in any of several 26 S proteasome subunits (e.g. d beta 5, dRpt1, dRpt2, dRpt5, dRpn2, and dRpn12) displayed decreased proteasome activity (as judged by hydrolysis of succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin), increased apoptosis, decreased cell proliferation without a specific block of the cell cycle, and accumulation of ubiquitinated cellular proteins. RNAi of many individual 26 S proteasome subunits promoted increased expression of many non-targeted subunits. This effect was not mimicked by chemical proteasome inhibitors such as lactacystin. Reduced expression of most targeted subunits disrupted the assembly of the 26 S proteasome. RNAi of six of eight targeted PA700 subunits disrupted that structure and caused accumulation of increased levels of uncapped 20 S proteasome. Notable exceptions included RNAi of dRpn10, a polyubiquitin binding subunit, and dUCH37, a ubiquitin isopeptidase. dRpn10-deficient cells showed a significant increase in succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin hydrolyzing activity of the 26 S proteasomes but accumulated polyubiquitinated proteins. d beta 5-Deficient cells had a phenotype similar to that of most PA700-deficient cells but also accumulated low molecular mass complexes containing subunits of the 20 S proteasome, probably representing unassembled precursors of the 20 S proteasomes. Cells deficient in several of the 26 S proteasome subunits were more resistant to otherwise toxic concentrations of various proteasome inhibitors. Our data suggest that those cells adapted to grow in conditions of impaired ubiquitin and proteasome-dependent protein degradation.  相似文献   

14.
The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.  相似文献   

15.
16.
17.
In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes “normal” mammalian nociception.  相似文献   

18.
DNA from 20 individuals from four wild colonies of naked mole-rats, Heterocephalus glaber , were analysed for restriction fragment length polymorphism of class I major histocompatibility complex genes and minisatellite DNA, both of which have been shown to be highly variable between individuals in other species. The minisatellite probe employed in this study revealed limited polymorphism in the DNA of naked mole-rats, both within and between neighbouring colonies. Of the two class I major histocompatibility complex probes, both showed a lack of polymorphism within colonies, while one revealed a single difference in the restriction fragment pattern between one colony and the other three. This probe also revealed a possible variation in copy number of genes in some individuals. The low numbers of bands on the restriction fragment pattern also indicated that the naked mole-rat MHC I, in contrast to that of other mammalian species, may contain relatively few genes homologous to the class I major histocompatibility complex of the mouse. The absence of variability in naked mole-rat DNA in these normally highly polymorphic loci suggests that there may be little or no genetic diversity either within or between closely neighbouring colonies of naked mole-rats in the wild. The lack of polymorphism in the MHC I questions its possible role in individual odour recognition in this species of rodent.  相似文献   

19.
Prion diseases are associated with the conversion of cellular prion protein (PrP(C)) to toxic β-sheet isoforms (PrP(Sc)), which are reported to inhibit the ubiquitin-proteasome system (UPS). Accordingly, UPS substrates accumulate in prion-infected mouse brains, suggesting impairment of the 26S proteasome. A direct interaction between its 20S core particle and PrP isoforms was demonstrated by immunoprecipitation. β-PrP aggregates associated with the 20S particle, but did not impede binding of the PA26 complex, suggesting that the aggregates do not bind to its ends. Aggregated β-PrP reduced the 20S proteasome's basal peptidase activity, and the enhanced activity induced by C-terminal peptides from the 19S ATPases or by the 19S regulator itself, including when stimulated by polyubiquitin conjugates. However, the 20S proteasome was not inhibited when the gate in the α-ring was open due to a truncation mutation or by association with PA26/PA28. These PrP aggregates inhibit by stabilising the closed conformation of the substrate entry channel. A similar inhibition of substrate entry into the proteasome may occur in other neurodegenerative diseases where misfolded β-sheet-rich proteins accumulate.  相似文献   

20.
Oxidative stress is reputed to be a significant contributor to the aging process and a key factor affecting species longevity. The tremendous natural variation in maximum species lifespan may be due to interspecific differences in reactive oxygen species generation, antioxidant defenses and/or levels of accrued oxidative damage to cellular macromolecules (such as DNA, lipids and proteins). The present study tests if the exceptional longevity of the longest living (> 28.3 years) rodent species known, the naked mole-rat (NMR, Heterocephalus glaber ), is associated with attenuated levels of oxidative stress. We compare antioxidant defenses (reduced glutathione, GSH), redox status (GSH/GSSG), as well as lipid (malondialdehyde and isoprostanes), DNA (8-OHdG), and protein (carbonyls) oxidation levels in urine and various tissues from both mole-rats and similar-sized mice. Significantly lower GSH and GSH/GSSG in mole-rats indicate poorer antioxidant capacity and a surprisingly more pro-oxidative cellular environment, manifested by 10-fold higher levels of in vivo lipid peroxidation. Furthermore, mole-rats exhibit greater levels of accrued oxidative damage to lipids (twofold), DNA (~two to eight times) and proteins (1.5 to 2-fold) than physiologically age-matched mice, and equal to that of same-aged mice. Given that NMRs live an order of magnitude longer than predicted based on their body size, our findings strongly suggest that mechanisms other than attenuated oxidative stress explain the impressive longevity of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号