首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The erythrocyte sedimentation rate (ESR), a commonly performed test of the acute phase response, is the rate at which erythrocytes sediment in vitro in 1 hr. The molecular basis of erythrocyte sedimentation is unknown. To identify genetic variants associated with ESR, we carried out a genome-wide association study of 7607 patients in the Electronic Medical Records and Genomics (eMERGE) network. The discovery cohort consisted of 1979 individuals from the Mayo Clinic, and the replication cohort consisted of 5628 individuals from the remaining four eMERGE sites. A nonsynonymous SNP, rs6691117 (Val→IIe), in the complement receptor 1 gene (CR1) was associated with ESR (discovery cohort p = 7 × 10(-12), replication cohort p = 3 × 10(-14), combined cohort p = 9 × 10(-24)). We imputed 61 SNPs in CR1, and a "possibly damaging" SNP (rs2274567, His→Arg) in linkage disequilibrium (r(2) = 0.74) with rs6691117 was also associated with ESR (discovery p = 5 × 10(-11), replication p = 7 × 10(-17), and combined cohort p = 2 × 10(-25)). The two nonsynonymous SNPs in CR1 are near the C3b/C4b binding site, suggesting a possible mechanism by which the variants may influence ESR. In conclusion, genetic variation in CR1, which encodes a protein that clears complement-tagged inflammatory particles from the circulation, influences interindividual variation in ESR, highlighting an association between the innate immunity pathway and erythrocyte interactions.  相似文献   

2.
Interleukins (ILs) are key mediators of the immune response and inflammatory process. Plasma levels of IL-10, IL-1Ra, and IL-6 are associated with metabolic conditions, show large inter-individual variations, and are under strong genetic control. Therefore, elucidation of the genetic variants that influence levels of these ILs provides useful insights into mechanisms of immune response and pathogenesis of diseases. We conducted a genome-wide association study (GWAS) of IL-10, IL-1Ra, and IL-6 levels in 707 non-diabetic African Americans using 5,396,780 imputed and directly genotyped single nucleotide polymorphisms (SNPs) with adjustment for gender, age, and body mass index. IL-10 levels showed genome-wide significant associations (p < 5 × 10(-8)) with eight SNPs, the most significant of which was rs5743185 in the PMS1 gene (p = 2.30 × 10(-10)). We tested replication of SNPs that showed genome-wide significance in 425 non-diabetic individuals from West Africa, and successfully replicated rs17365948 in the YWHAZ gene (p = 0.02). IL-1Ra levels showed suggestive associations with two SNPs in the ASB3 gene (p = 2.55 × 10(-7)), ten SNPs in the IL-1 gene family (IL1F5, IL1F8, IL1F10, and IL1Ra, p = 1.04 × 10(-6) to 1.75 × 10(-6)), and 23 SNPs near the IL1A gene (p = 1.22 × 10(-6) to 1.63 × 10(-6)). We also successfully replicated rs4251961 (p = 0.009); this SNP was reported to be associated with IL-1Ra levels in a candidate gene study of Europeans. IL-6 levels showed genome-wide significant association with one SNP (RP11-314E23.1; chr6:133397598; p = 8.63 × 10(-9)). To our knowledge, this is the first GWAS on IL-10, IL-1Ra, and IL-6 levels. Follow-up of these findings may provide valuable insight into the pathobiology of IL actions and dysregulations in inflammation and human diseases.  相似文献   

3.
Recent genome-wide association scans (GWAS) and meta-analysis studies on European populations have identified many genes previously implicated in lipid regulation. Validation of these loci on different global populations is important in determining their clinical relevance, particularly for development of novel drug targets for treating and preventing diabetic dyslipidemia and coronary artery disease (CAD). In an attempt to replicate GWAS findings on a non-European sample, we examined the role of six of these loci (CELSR2-PSRC1-SORT1 rs599839; CDKN2A-2B rs1333049; BUD13-ZNF259 rs964184; ZNF259 rs12286037; CETP rs3764261; APOE-C1-C4-C2 rs4420638) in our Asian Indian cohort from the Sikh Diabetes Study (SDS) comprising 3,781 individuals (2,902 from Punjab and 879 from the US). Two of the six SNPs examined showed convincing replication in these populations of Asian Indian origin. Our study confirmed a strong association of CETP rs3764261 with high-density lipoprotein cholesterol (HDL-C) (p?=?2.03×10(-26)). Our results also showed significant associations of two GWAS SNPs (rs964184 and rs12286037) from BUD13-ZNF259 near the APOA5-A4-C3-A1 genes with triglyceride (TG) levels in this Asian Indian cohort (rs964184: p?=?1.74×10(-17); rs12286037: p?=?1.58×10(-2)). We further explored 45 SNPs in a ~195 kb region within the chromosomal region 11q23.3 (encompassing the BUD13-ZNF259, APOA5-A4-C3-A1, and SIK3 genes) in 8,530 Asian Indians from the London Life Sciences Population (LOLIPOP) (UK) and SDS cohorts. Five more SNPs revealed significant associations with TG in both cohorts individually as well as in a joint meta-analysis. However, the strongest signal for TG remained with BUD13-ZNF259 (rs964184: p?=?1.06×10(-39)). Future targeted deep sequencing and functional studies should enhance our understanding of the clinical relevance of these genes in dyslipidemia and hypertriglyceridemia (HTG) and, consequently, diabetes and CAD.  相似文献   

4.
Non-Hodgkin lymphoma (NHL) represents a diverse group of hematological malignancies, of which follicular lymphoma (FL) is a prevalent subtype. A previous genome-wide association study has established a marker, rs10484561 in the human leukocyte antigen (HLA) class II region on 6p21.32 associated with increased FL risk. Here, in a three-stage genome-wide association study, starting with a genome-wide scan of 379 FL cases and 791 controls followed by validation in 1,049 cases and 5,790 controls, we identified a second independent FL-associated locus on 6p21.32, rs2647012 (OR(combined) = 0.64, P(combined) = 2 × 10(-21)) located 962 bp away from rs10484561 (r(2)<0.1 in controls). After mutual adjustment, the associations at the two SNPs remained genome-wide significant (rs2647012:OR(adjusted) = 0.70, P(adjusted) = 4 × 10(-12); rs10484561:OR(adjusted) = 1.64, P(adjusted) = 5 × 10(-15)). Haplotype and coalescence analyses indicated that rs2647012 arose on an evolutionarily distinct haplotype from that of rs10484561 and tags a novel allele with an opposite (protective) effect on FL risk. Moreover, in a follow-up analysis of the top 6 FL-associated SNPs in 4,449 cases of other NHL subtypes, rs10484561 was associated with risk of diffuse large B-cell lymphoma (OR(combined) = 1.36, P(combined) = 1.4 × 10(-7)). Our results reveal the presence of allelic heterogeneity within the HLA class II region influencing FL susceptibility and indicate a possible shared genetic etiology with diffuse large B-cell lymphoma. These findings suggest that the HLA class II region plays a complex yet important role in NHL.  相似文献   

5.
We performed a genome-wide association study (GWAS) on levels of serum total protein (TP), albumin (ALB), and non-albumin protein (NAP). We analyzed SNPs on autosomal chromosomes using data from 9,103 Japanese individuals, followed by a replication study of 1,600 additional individuals. We confirmed the previously- reported association of GCKR on chromosome 2p23.3 with serum ALB (rs1260326, P(meta) = 3.1 × 10(-9)), and additionally identified the significant genome-wide association of rs4985726 in TNFRSF13B on 17p11.2 with both TP and NAP (P(meta) = 1.2 × 10(-14) and 7.1 × 10(-24), respectively). For NAP, rs3803800 and rs11552708 in TNFSF13 on 17p13.1 (P(meta) = 7.2 × 10(-15) and 7.5 × 10(-10), respectively) as well as rs10007186 on 4q21.2 near ANXA3 (P(meta) = 1.3 × 10(-9)) also indicated significant associations. Interestingly, TNFRSF13B and TNFSF13 encode a tumor necrosis factor (TNF) receptor and its ligand, which together constitute an important receptor-ligand axis for B-cell homeostasis and immunoglobulin production. Furthermore, three SNPs, rs4985726, rs3803800, and rs11552708 in TNFRSF13B and TNFSF13, were indicated to be associated with serum levels of IgG (P<2.3 × 10(-3)) and IgM (P<0.018), while rs3803800 and rs11552708 were associated with IgA (P<0.013). Rs10007186 in 4q21.2 was associated with serum levels of IgA (P = 0.036), IgM (P = 0.019), and IgE (P = 4.9 × 10(-4)). Our results should add interesting knowledge about the regulation of major serum components.  相似文献   

6.
Adiponectin is associated with obesity and insulin resistance. To date, there has been no genome-wide association study (GWAS) of adiponectin levels in Asians. Here we present a GWAS of a cohort of Korean volunteers. A total of 4,001 subjects were genotyped by using a genome-wide marker panel in a two-stage design (979 subjects initially and 3,022 in a second stage). Another 2,304 subjects were used for follow-up replication studies with selected markers. In the discovery phase, the top SNP associated with mean log adiponectin was rs3865188 in CDH13 on chromosome 16 (p = 1.69 × 10(-15) in the initial sample, p = 6.58 × 10(-39) in the second genome-wide sample, and p = 2.12 × 10(-32) in the replication sample). The meta-analysis p value for rs3865188 in all 6,305 individuals was 2.82 × 10(-83). The association of rs3865188 with high-molecular-weight adiponectin (p = 7.36 × 10(-58)) was even stronger in the third sample. A reporter assay that evaluated the effects of a CDH13 promoter SNP in complete linkage disequilibrium with rs3865188 revealed that the major allele increased expression 2.2-fold. This study clearly shows that genetic variants in CDH13 influence adiponectin levels in Korean adults.  相似文献   

7.
Present study was aimed to explore the effect of (TA)n UGT1A1 gene promoter polymorphism on bilirubin metabolism, bilirubinaemia, predisposition to cholelithiasis and subsequent cholecystectomy, in Sickle-Cell Anemia (SCA) and beta-Thalasemia major (bTH) in Kuwaiti subjects compared to other population. This polymorphism was analyzed and correlated to total bilirubin and cholelithiasis in 270 age, gender, ethnically matched subjects (92 bTH, 116 SCA and 62 Controls) using PCR, dHPLC, fragment analysis and direct sequencing. Four genotypes of UGT1A1 were detected in this study (TA6/6, TA6/7, TA6/8 and TA7/7). (TA)6/8 was found only in four individuals; hence it was not included in the analysis. There was a statistically significant association of genotypes with serum total bilirubin levels in both bTH and SCA groups (p<0.001). Subjects with (TA)7/7 had the highest total serum bilirubin level (178.7±3.5 µmole/l). A significant association was observed between allele (TA)7 and cholelithiasis development (p = 0.0001). The 40%, 67.5% and 100% of SCA with (TA)6/6, (TA)6/7 and (TA)7/7 respectively developed cholelithiasis and were subsequently cholecystectomized. Our results confirm UGT1A1 (TA)7 allele as one of the factors accounting for the hyperbilirubinemia and cholelithiasis observed in SCA and bTH.  相似文献   

8.
Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands--yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15 × 10(-36)), SULT2A1 (rs2637125; p = 2.61 × 10(-19)), ARPC1A (rs740160; p = 1.56 × 10(-16)), TRIM4 (rs17277546; p = 4.50 × 10(-11)), BMF (rs7181230; p = 5.44 × 10(-11)), HHEX (rs2497306; p = 4.64 × 10(-9)), BCL2L11 (rs6738028; p = 1.72 × 10(-8)), and CYP2C9 (rs2185570; p = 2.29 × 10(-8)). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS.  相似文献   

9.
We conducted an association study across the human leukocyte antigen (HLA) complex to identify loci associated with multiple sclerosis (MS). Comparing 1927 SNPs in 1618 MS cases and 3413 controls of European ancestry, we identified seven SNPs that were independently associated with MS conditional on the others (each P ≤ 4 x 10(-6)). All associations were significant in an independent replication cohort of 2212 cases and 2251 controls (P ≤ 0.001) and were highly significant in the combined dataset (P ≤ 6 x 10(-8)). The associated SNPs included proxies for HLA-DRB1*15:01 and HLA-DRB1*03:01, and SNPs in moderate linkage disequilibrium (LD) with HLA-A*02:01, HLA-DRB1*04:01 and HLA-DRB1*13:03. We also found a strong association with rs9277535 in the class II gene HLA-DPB1 (discovery set P = 9 x 10(-9), replication set P = 7 x 10(-4), combined P = 2 x 10(-10)). HLA-DPB1 is located centromeric of the more commonly typed class II genes HLA-DRB1, -DQA1 and -DQB1. It is separated from these genes by a recombination hotspot, and the association is not affected by conditioning on genotypes at DRB1, DQA1 and DQB1. Hence rs9277535 represents an independent MS-susceptibility locus of genome-wide significance. It is correlated with the HLA-DPB1*03:01 allele, which has been implicated previously in MS in smaller studies. Further genotyping in large datasets is required to confirm and resolve this association.  相似文献   

10.
To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom ~50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with ~2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 × 10(-9)) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p < 2.4 × 10(-6)). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 × 10(-7)) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 × 10(-15)). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 × 10(-8)). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups.  相似文献   

11.

Introduction

Circulating cell-free DNA (cf-DNA) is a useful indicator of cell death, and it can also be used to predict outcomes in various clinical disorders. Several innate immune mechanisms are known to be involved in eliminating DNA and chromatin-related material as part of the inhibition of potentially harmful autoimmune responses. However, the exact molecular mechanism underlying the clearance of circulating cf-DNA is currently unclear.

Methods

To examine the mechanisms controlling serum levels of cf-DNA, we carried out a genome-wide association analysis (GWA) in a cohort of young adults (aged 24–39 years; n = 1841; 1018 women and 823 men) participating in the Cardiovascular Risk in Young Finns Study. Genotyping was performed with a custom-built Illumina Human 670 k BeadChip. The Quant-iTTM high sensitivity DNA assay was used to measure cf-DNA directly from serum.

Results

The results revealed that 110 single nucleotide polymorphisms (SNPs) were associated with serum cf-DNA with genome-wide significance (p<5×10−8). All of these significant SNPs were localised to chromosome 2q37, near the UDP-glucuronosyltransferase 1 (UGT1) family locus, and the most significant SNPs localised within the UGT1 polypeptide A1 (UGT1A1) gene region.

Conclusion

The UGT1A1 enzyme catalyses the detoxification of several drugs and the turnover of many xenobiotic and endogenous compounds by glucuronidating its substrates. These data indicate that UGT1A1-associated processes are also involved in the regulation of serum cf-DNA concentrations.  相似文献   

12.
The manifestation of coronary artery disease (CAD) follows a well-choreographed series of events that includes damage of arterial endothelial cells and deposition of lipids in the sub-endothelial layers. Genome-wide association studies (GWAS) of multiple populations with distinctive genetic and lifestyle backgrounds are a crucial step in understanding global CAD pathophysiology. In this study, we report a GWAS on the genetic basis of arterial stenosis as measured by cardiac catheterization in a Lebanese population. The locus of the phosphatase and actin regulator 1 gene (PHACTR1) showed association with coronary stenosis in a discovery experiment with genome wide data in 1,949 individuals (rs9349379, OR?=?1.37, p?=?1.57×10(-5)). The association was replicated in an additional 2,547 individuals (OR?=?1.31, p?=?8.85×10(-6)), leading to genome-wide significant association in a combined analysis (OR?=?1.34, p?=?8.02×10(-10)). Results from this GWAS support a central role of PHACTR1 in CAD susceptibility irrespective of lifestyle and ethnic divergences. This association provides a plausible component for understanding molecular mechanisms involved in the formation of stenosis in cardiac vessels and a potential drug target against CAD.  相似文献   

13.
Endurance training-induced changes in hemodynamic traits are heritable. However, few genes associated with heart rate training responses have been identified. The purpose of our study was to perform a genome-wide association study to uncover DNA sequence variants associated with submaximal exercise heart rate training responses in the HERITAGE Family Study. Heart rate was measured during steady-state exercise at 50 W (HR50) on 2 separate days before and after a 20-wk endurance training program in 483 white subjects from 99 families. Illumina HumanCNV370-Quad v3.0 BeadChips were genotyped using the Illumina BeadStation 500GX platform. After quality control procedures, 320,000 single-nucleotide polymorphisms (SNPs) were available for the genome-wide association study analyses, which were performed using the MERLIN software package (single-SNP analyses and conditional heritability tests) and standard regression models (multivariate analyses). The strongest associations for HR50 training response adjusted for age, sex, body mass index, and baseline HR50 were detected with SNPs at the YWHAQ locus on chromosome 2p25 (P = 8.1 × 10(-7)), the RBPMS locus on chromosome 8p12 (P = 3.8 × 10(-6)), and the CREB1 locus on chromosome 2q34 (P = 1.6 × 10(-5)). In addition, 37 other SNPs showed P values <9.9 × 10(-5). After removal of redundant SNPs, the 10 most significant SNPs explained 35.9% of the ΔHR50 variance in a multivariate regression model. Conditional heritability tests showed that nine of these SNPs (all intragenic) accounted for 100% of the ΔHR50 heritability. Our results indicate that SNPs in nine genes related to cardiomyocyte and neuronal functions, as well as cardiac memory formation, fully account for the heritability of the submaximal heart rate training response.  相似文献   

14.
Many common diseases are accompanied by disturbances in biochemical traits. Identifying the genetic determinants could provide novel insights into disease mechanisms and reveal avenues for developing new therapies. Here, we report a genome-wide association analysis for commonly measured serum and urine biochemical traits. As part of the WTCCC, 500,000 SNPs genome wide were genotyped in 1955 hypertensive individuals characterized for 25 serum and urine biochemical traits. For each trait, we assessed association with individual SNPs, adjusting for age, sex, and BMI. Lipid measurements were further examined in a meta-analysis of genome-wide data from a type 2 diabetes scan. The most promising associations were examined in two epidemiological cohorts. We discovered association between serum urate and SLC2A9, a glucose transporter (p = 2 x 10(-15)) and confirmed this in two independent cohorts, GRAPHIC study (p = 9 x 10(-15)) and TwinsUK (p = 8 x 10(-19)). The odds ratio for hyperuricaemia (defined as urate >0.4 mMol/l) is 1.89 (95% CI = 1.36-2.61) per copy of common allele. We also replicated many genes previously associated with serum lipids and found previously recognized association between LDL levels and SNPs close to genes encoding PSRC1 and CELSR2 (p = 1 x 10(-7)). The common allele was associated with a 6% increase in nonfasting serum LDL. This region showed increased association in the meta-analysis (p = 4 x 10(-14)). This finding provides a potential biological mechanism for the recent association of this same allele of the same SNP with increased risk of coronary disease.  相似文献   

15.
Colorectal cancer is the second leading cause of cancer death in developed countries. Genome-wide association studies (GWAS) have successfully identified novel susceptibility loci for colorectal cancer. To follow up on these findings, and try to identify novel colorectal cancer susceptibility loci, we present results for GWAS of colorectal cancer (2,906 cases, 3,416 controls) that have not previously published main associations. Specifically, we calculated odds ratios and 95% confidence intervals using log-additive models for each study. In order to improve our power to detect novel colorectal cancer susceptibility loci, we performed a meta-analysis combining the results across studies. We selected the most statistically significant single nucleotide polymorphisms (SNPs) for replication using ten independent studies (8,161 cases and 9,101 controls). We again used a meta-analysis to summarize results for the replication studies alone, and for a combined analysis of GWAS and replication studies. We measured ten SNPs previously identified in colorectal cancer susceptibility loci and found eight to be associated with colorectal cancer (p value range 0.02 to 1.8?×?10(-8)). When we excluded studies that have previously published on these SNPs, five SNPs remained significant at p?相似文献   

16.
孙一丹  田子钊  周伟  李沫  怀聪  贺林  秦胜营 《遗传》2021,(3):249-260
肝功能检测(liver function test, LFTs)指标是受遗传和环境影响的复杂性状,具有个体差异性。为系统性研究中国人群全基因组范围内单核苷酸多态性(single nucleotide polymorphism, SNP)与肝功能指标之间的联系,本研究利用英国生物银行(UK Biobank)中1653名中国人的基因分型数据和表型数据为研究对象,利用PLINK软件进行全关联分析研究(genome-wide association study, GWAS),发现229个SNP与中国人群血液中的总胆红素(total bilirubin, TB)相关,27个SNP与中国人群血液中碱性磷酸酶(alkaline phosphatase, ALP)相关,36个SNP与中国人群血液中的γ-谷氨酰转肽酶(γ-glutamyl transpeptidase, GGT)相关,1个SNP与中国人群血液中的门冬氨酸氨基转移酶(aspartate transaminase, AST)相关,最显著的位点中有11个位点是新的LFTs关联位点。通过功能基因组分析,发现这些位点的临床意义(如吉尔伯特综合征)...  相似文献   

17.
We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ~2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of -0.11 standard deviations [SD] per C allele, P = 6.2 × 10(-9)). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (-0.14 SD per C allele, P = 2.3 × 10(-12), and -0.16 SD per G allele, P = 1.2 × 10(-15), respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3 × 10(-9)), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9 × 10(-6) and rs2707466: OR = 1.22, P = 7.2 × 10(-6)). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16(-/-) mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%-61% (6.5 × 10(-13)相似文献   

18.

Introduction

Liver enzyme levels and total serum bilirubin are under genetic control and in recent years genome-wide population-based association studies have identified different susceptibility loci for these traits. We conducted a genome-wide association study in European ancestry participants from the Electronic Medical Records and Genomics (eMERGE) Network dataset of patient medical records with available genotyping data in order to identify genetic contributors to variability in serum bilirubin levels and other liver function tests and to compare the effects between adult and pediatric populations.

Methods

The process of whole genome imputation of eMERGE samples with standard quality control measures have been described previously. After removing missing data and outliers based on principal components (PC) analyses, 3294 samples from European ancestry were used for the GWAS study. The association between each single nucleotide polymorphism (SNP) and total serum bilirubin and other liver function tests was tested using linear regression, adjusting for age, gender, site, platform and ancestry principal components (PC).

Results

Consistent with previous results, a strong association signal has been detected for UGT1A gene cluster (best SNP rs887829, beta = 0.15, p = 1.30x10-118) for total serum bilirubin level. Indeed, in this region more than 176 SNPs (or indels) had p<10−8 spanning 150Kb on the long arm of chromosome 2q37.1. In addition, we found a similar level of magnitude in a pediatric group (p = 8.26x10-47, beta = 0.17). Further imputation using sequencing data as a reference panel revealed association of other markers including known TA7 repeat indels (rs8175347) (p = 9.78x10-117) and rs111741722 (p = 5.41x10-119) which were in proxy (r2 = 0.99) with rs887829. Among rare variants, two Asian subjects homozygous for coding SNP rs4148323 (G71R) were identified. Additional known effects for total serum bilirubin were also confirmed including organic anion transporters SLCO1B1-SLCO1B3, TDRP and ZMYND8 at FDR<0.05 with no gene-gene interaction effects. Phenome-wide association studies (PheWAS) suggest a protective effect of TA7 repeat against cerebrovascular disease in an adult cohort (OR = 0.75, p = 0.0008). Among other liver function tests, we also confirmed the previous effect of the ABO blood group locus for variation in serum alkaline phosphatase (rs579459, p = 9.44x10-15).

Conclusions

Taken together, our data present interesting findings with strong confirmation of previous effects by simply using the eMERGE electronic health record phenotyping. In addition, our findings indicate that similar to the adult population, the UGT1A1 is the main locus responsible for normal variation of serum bilirubin in pediatric populations.  相似文献   

19.
Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8 × 10(-106)), PRMT6 (rs17496332, 1p13.3, p = 1.4 × 10(-11)), GCKR (rs780093, 2p23.3, p = 2.2 × 10(-16)), ZBTB10 (rs440837, 8q21.13, p = 3.4 × 10(-09)), JMJD1C (rs7910927, 10q21.3, p = 6.1 × 10(-35)), SLCO1B1 (rs4149056, 12p12.1, p = 1.9 × 10(-08)), NR2F2 (rs8023580, 15q26.2, p = 8.3 × 10(-12)), ZNF652 (rs2411984, 17q21.32, p = 3.5 × 10(-14)), TDGF3 (rs1573036, Xq22.3, p = 4.1 × 10(-14)), LHCGR (rs10454142, 2p16.3, p = 1.3 × 10(-07)), BAIAP2L1 (rs3779195, 7q21.3, p = 2.7 × 10(-08)), and UGT2B15 (rs293428, 4q13.2, p = 5.5 × 10(-06)). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5 × 10(-08), women p = 0.66, heterogeneity p = 0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ~15.6% and ~8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance.  相似文献   

20.
The existence of multiple inherited disorders of iron metabolism suggests genetic contributions to iron deficiency. We previously performed a genome-wide association study of iron-related single nucleotide polymorphisms (SNPs) using DNA from white men aged ≥ 25 y and women ≥ 50 y in the Hemochromatosis and Iron Overload Screening (HEIRS) Study with serum ferritin (SF) ≤ 12 μg/L (cases) and controls (SF >100 μg/L in men, SF >50 μg/L in women). We report a follow-up study of white, African-American, Hispanic, and Asian HEIRS participants, analyzed for association between SNPs and eight iron-related outcomes. Three chromosomal regions showed association across multiple populations, including SNPs in the TF and TMPRSS6 genes, and on chromosome 18q21. A novel SNP rs1421312 in TMPRSS6 was associated with serum iron in whites (p = 3.7 × 10(-6)) and replicated in African Americans (p = 0.0012).Twenty SNPs in the TF gene region were associated with total iron-binding capacity in whites (p<4.4 × 10(-5)); six SNPs replicated in other ethnicities (p<0.01). SNP rs10904850 in the CUBN gene on 10p13 was associated with serum iron in African Americans (P = 1.0 × 10(-5)). These results confirm known associations with iron measures and give unique evidence of their role in different ethnicities, suggesting origins in a common founder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号