首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In vitro synthesis of vertebrate U1 snRNA.   总被引:17,自引:1,他引:16       下载免费PDF全文
  相似文献   

2.
In this paper we describe a method for preparing native, RNA-free, proteins from anti-m3G purified snRNPs (U1, U2, U4/U6 and U5) and the subsequent quantitative reconstitution of U1 and U2 snRNPs from purified proteins and snRNA. Reconstituted U1 and U2 snRNPs contained the full complement of core proteins, B, B, D1, D2, D3, E, F and G. Both the U1 and U2 reconstituted particles were stable in CsCl gradients and had the expected buoyant density of 1.4 g/cm3. Reconstituted RNP particle formation was not competited by a 50 fold molar excess of tRNA, as determined by gel retardation assays. However, U1 and U2 particle formation was reduced in the presence of an excess of cold U1 or U2 snRNA demonstrating a specific RNA-protein interaction. U1 and U2 snRNPs were also efficiently reconstituted in vitro, utilizing proteins prepared from mono Q purified U1 and U2 snRNPs. This suggests that for the assembly of snRNPs in vitro no auxiliary proteins other than bona fide snRNP proteins appear to be required. The potential of this reconstitution technique for investigating snRNP assembly and snRNA-protein interactions is discussed.Abbreviations PEG Polyethelene glycol - PMSF Phenylmethyl sulfonylfluoride - TP total proteins - mAb monoclonal antibody  相似文献   

3.
Analysis of in vitro binding of U1-A protein mutants to U1 snRNA.   总被引:5,自引:1,他引:5       下载免费PDF全文
Despite the great sequence similarity between U1A and U2B", both proteins do have a difference in RNA binding specificity and in the way they bind to their cognate RNAs. The U1A protein is able to bind in vitro U1 RNA independently of other factors. The U2B" protein binds specifically to U2 RNA in the presence of the U2A' protein only. We have compared the effect on RNA binding of multiple double point mutations at analogous positions in the U1A and U2B" protein. The results obtained show that amino acids at almost all of the analogous positions tested in U1A and U2B" have a comparable qualitative effect on RNA binding although the quantitative effect of mutations on U2B" is more severe than on U1A. Using U1A mutants with internal duplications a distinct area of the RNP motif of the U1A protein was identified which appears not to be directly involved in U1 RNA binding. In addition, roles of the highly conserved RNP1 and RNP2 sequences of the N-terminal RNP motif of the U1A protein, are investigated by replacing them with the analogous U1-70K sequences.  相似文献   

4.
In vivo disruption of Xenopus U3 snRNA affects ribosomal RNA processing.   总被引:38,自引:10,他引:38       下载免费PDF全文
R Savino  S A Gerbi 《The EMBO journal》1990,9(7):2299-2308
DNA oligonucleotide complementary to sequences in the 5' third of U3 snRNA were injected into Xenopus oocyte nuclei to disrupt endogenous U3 snRNA. The effect of this treatment on rRNA processing was examined. We found that some toads have a single rRNA processing pathway, whereas in other toads, two rRNA processing pathways can coexist in a single oocyte. U3 snRNA disruption in toads with the single rRNA processing pathway caused a reduction in 20S and '32S' pre-rRNA. In addition, in toads with two rRNA processing pathways, an increase in '36S' pre-rRNA of the second pathway is observed. This is the first in vivo demonstration that U3 snRNA plays a role in rRNA processing. Cleavage site #3 is at the boundary of ITS 1 and 5.8S and links all of the affected rRNA intermediates: 20S and '32S' are the products of site #3 cleavage in the first pathway and '36S' is the substrate for cleavage at site #3 in the second pathway. We postulate that U3 snRNP folds pre-rRNA into a conformation dictating correct cleavage at processing site #3.  相似文献   

5.
6.
The power of in vitro selection methods for the isolation of nucleic acids that display a desired property derives from the enormous number of sequence variants that can be surveyed with relative ease using controlled in vitro biochemistry. This methodology has found a variety of applications, ranging from the study of nucleic acid-protein interactions and natural ribozymes to the isolation of nucleic acids with potential as diagnostic or therapeutic reagents or with new catalytic activities. The number of reported applications is growing exponentially, and each application presents new variables and challenges. The goal of this article is to guide prospective users through the myriad decisions that must be made in the design and execution of a successful in vitro selection experiment.  相似文献   

7.
8.
L Ye  M Sugiura 《Nucleic acids research》1992,20(23):6275-6279
Five ribonucleoproteins (or RNA-binding proteins) from tobacco chloroplasts have been identified to date; each of these contains an acidic N-terminal domain (24-64 amino acids) and two conserved RNA-binding domains (82-83 amino acids). All five ribonucleoproteins can bind to ssDNA and dsDNA but show high specificity for poly(G) and poly(U). Here we present the nucleic acid binding activity of each domain using a series of deletion mutant proteins made in vitro from the chloroplast 29 kDa ribonucleoproteins. The acidic domain does not have a positive effect on binding activities and proteins lacking this domain show higher affinities for nucleic acids than the wild-type proteins. Mutant proteins containing single RNA-binding domains can bind to poly(G) and poly(U), though with lower affinities than proteins containing two RNA-binding domains. The spacer region (11-37 amino acids) between the two RNA-binding domains does not interact with poly(G) or poly(U) by itself, but is required for the additive activity of the two RNA-binding domains. Proteins consisting of two RNA-binding domains but lacking the spacer have the same activity as those containing only one RNA-binding domain. Possible roles for each domain in chloroplast ribonucleoproteins are discussed.  相似文献   

9.
10.
In vitro anti-proliferative activities of ellagic acid   总被引:1,自引:0,他引:1  
The potential cytotoxic and anti-proliferative activities of ellagic acid (a naturally occurring bioactive compound in berries, grapes, and nuts) was evaluated using human umbilical vein endothelial cells (HUVEC), normal human lung fibroblast cells HEL 299, Caco-2 colon, MCF-7 breast, Hs 578T breast, and DU 145 human prostatic cancer cells. Ellagic acid at concentration in the range 10-100 micromol/L did not affect the viability of normal fibroblast cells during a 24-hour incubation. An increase in adenosine triphosphate (ATP) bioluminescence of approximately 18-21% was observed in normal cells incubated with ellagic acid. In contrast, ellagic acid at 1-100 micromol/L dose-dependently inhibited HUVEC tube formation and proliferation on a reconstituted extracellular matrix and showed strong anti-proliferative activity against the colon, breast, and prostatic cancer cell lines investigated. The most sensitive cells were the Caco-2, and the most resistant were the breast cancer cells. Ellagic acid induced cancer cell death by apoptosis as shown by the microscopic examination of cell gross morphology. Ellagic acid induced reduced cancer cell viability as shown by decreased ATP levels of the cancer cells. After 24 hours incubation of 100 micromol/L of ellagic acid with Caco-2, MCF-7, Hs 578T, and DU 145 cancer cells, ellagic acid suppressed fetal bovine serum (FBS) stimulation of cell migration. The apoptosis induction was accompanied by a decreased in the levels of pro-matrix metalloproteinase-2 (pro-MMP-2 or gelatinase A), pro-matrix metalloproteinase-9 (pro-MMP-9 or gelatinase B), and vascular endothelial growth factor (VEGF(165)) in conditioned media. The results suggest that ellagic acid expressed a selective cytotoxicity and anti-proliferative activity, and induced apoptosis in Caco-2, MCF-7, Hs 578T, and DU 145 cancer cells without any toxic effect on the viability of normal human lung fibroblast cells. It was also observed that the mechanism of apoptosis induction in ellagic acid-treated cancer cells was associated with decreased ATP production, which is crucial for the viability of cancer cells.  相似文献   

11.
Chemical derivatization of nucleic stains such as ethidium bromide or DAPI with tailored, photoresponsive caging groups, allows for "on demand" spatiotemporal control of their in vivo nucleic acid binding, as well as for improving their cellular uptake. This effect was particularly noteworthy for a nitro-veratryloxycarbonyl-caged derivative of ethidium bromide that, in contrast with the parent stain, is effectively internalized into living cells. The activation strategy works in light-accessible, therapeutically relevant settings, such as human retinas, and can even be applied for the release of active compounds in the eyes of living mice.  相似文献   

12.
Core snRNP proteins bind snRNA through the conserved Sm site, PuA(U)n>/=3GPu. While yeast U1 snRNA has three matches to the Sm consensus, the U1 3'-terminal Sm site was found to be both necessary and sufficient for U1 function. Mutation of this site inhibited pre-mRNA splicing, blocked cell division and resulted in the accumulation of two 3'-extended forms of the U1 snRNA. Cells which harbor the Sm site mutation lack mature U1 RNA (U1alpha) but have a minor polyadenylated species, U1gamma, and a prominent, non-polyadenylated species, U1beta. Metabolic depletion of the essential Sm core protein, Smd1p, also resulted in the increased accumulation of U1beta and U1gamma. In vitro, synthetic U1 precursors were cleaved by Rnt1p (RNase III) very near the U1beta 3'-end observed in vivo. We propose that U1beta is an Rnt1p-cleaved intermediate and that U1 maturation to the U1alpha form occurs through an Sm-sensitive step. Interestingly, both U1alpha and a second, much longer RNA, U1straightepsilon, were produced in an rnt1 mutant strain. These results suggest that yeast U1 snRNA processing may progress through Rnt1p-dependent and Rnt1p-independent pathways, both of which require a fun-ctional Sm site for final snRNA maturation.  相似文献   

13.
Metazoan replication-dependent histone mRNAs are not polyadenylated, and instead terminate in a conserved stem-loop structure generated by an endonucleolytic cleavage involving the U7 snRNP, which interacts with histone pre-mRNAs through base-pairing between U7 snRNA and a purine-rich sequence in the pre-mRNA located downstream of the cleavage site. Here we generate null mutations of the single Drosophila U7 gene and demonstrate that U7 snRNA is required in vivo for processing all replication-associated histone pre-mRNAs. Mutation of U7 results in the production of poly A+ histone mRNA in both proliferating and endocycling cells because of read-through to cryptic polyadenylation sites found downstream of each Drosophila histone gene. A similar molecular phenotype also results from mutation of Slbp, which encodes the protein that binds the histone mRNA 3' stem-loop. U7 null mutants develop into sterile males and females, and these females display defects during oogenesis similar to germ line clones of Slbp null cells. In contrast to U7 mutants, Slbp null mutations cause lethality. This may reflect a later onset of the histone pre-mRNA processing defect in U7 mutants compared to Slbp mutants, due to maternal stores of U7 snRNA. A double mutant combination of a viable, hypomorphic Slbp allele and a viable U7 null allele is lethal, and these double mutants express polyadenylated histone mRNAs earlier in development than either single mutant. These data suggest that SLBP and U7 snRNP cooperate in the production of histone mRNA in vivo, and that disruption of histone pre-mRNA processing is detrimental to development.  相似文献   

14.
Long interspersed elements (LINEs) are mobile elements that comprise a large proportion of many eukaryotic genomes. Although some LINE-encoded open reading frame 1 proteins (ORF1ps) were suggested to be required for LINE mobilization through binding to their RNA, their general role is not known. The ZfL2-1 ORF1p, which belongs to the esterase-type ORF1p, is especially interesting because it has no known RNA-binding domain. Here we demonstrate that ZfL2-1 ORF1p has all the canonical activities associated with known ORF1ps, including self-interaction, nucleic acid binding, and nucleic acid chaperone activities. In particular, we showed that its chaperone activity is reversible, suggesting that the chaperone activities of many other ORF1ps are also reversible. From this discovery, we propose that LINE ORF1ps play a general role in LINE integration by forming a complex with LINE RNA and rearranging its conformation.  相似文献   

15.
An RNA sequence showing high stability with respect to digestion by ribonuclease T1 (RNase T1) was isolated by in vitro selection from an RNA library. Although ribonuclease T1 cleaves single-stranded RNA specifically after guanosine residues, secondary structure calculations predict several guanosines in single-stranded areas. Two of these guanosines are part of a GGCA-tetraloop, a recurring structure element in the secondary structure predictions. Molecular dynamics simulations of the conformation space of the nucleotides involved in this tetraloop show on the one hand that the nucleic acid backbone of the guanosines cannot realise the conformation required for cleavage by RNase T1. On the other hand, it could be shown that an RNA molecule not forced into a tetraloop occupies this conformation several times in the course of the simulation. The simulations confirm the GGCA-tetraloop as an RNase-stable secondary structure element. Our results show that, besides the known prerequisite of a single-stranded RNA, RNase T1 has additional demands on the substrate conformation.  相似文献   

16.
17.
Loflin P  Lever JE 《BioTechniques》2002,32(5):1020, 1022, 1024-1020, 105 passim
Here we describe a modified ligand screening strategy for the expression cloning of mammalian proteins that require the activation of protein kinase cascades to activate ligand binding activity. The manipulation of prokaryotic signaling pathways by the application of appropriate inhibitors or agonists to the nitrocellulose filter during functional screening of standard bacteriophage cDNA expression libraries can permit detection of activities that would not otherwise be found in their active state. We have applied this strategy to a A expression library to clone a novel renal cDNA that exhibits cAMP-dependent RNA binding activity when subsequently tested by ectopic expression in mammalian cells.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号