首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In an effort to discover new drugs to treat tuberculosis (TB) we chose alanine racemase as the target of our drug discovery efforts. In Mycobacterium tuberculosis, the causative agent of TB, alanine racemase plays an essential role in cell wall synthesis as it racemizes L-alanine into D-alanine, a key building block in the biosynthesis of peptidoglycan. Good antimicrobial effects have been achieved by inhibition of this enzyme with suicide substrates, but the clinical utility of this class of inhibitors is limited due to their lack of target specificity and toxicity. Therefore, inhibitors that are not substrate analogs and that act through different mechanisms of enzyme inhibition are necessary for therapeutic development for this drug target.

Methodology/Principal Findings

To obtain non-substrate alanine racemase inhibitors, we developed a high-throughput screening platform and screened 53,000 small molecule compounds for enzyme-specific inhibitors. We examined the ‘hits’ for structural novelty, antimicrobial activity against M. tuberculosis, general cellular cytotoxicity, and mechanism of enzyme inhibition. We identified seventeen novel non-substrate alanine racemase inhibitors that are structurally different than any currently known enzyme inhibitors. Seven of these are active against M. tuberculosis and minimally cytotoxic against mammalian cells.

Conclusions/Significance

This study highlights the feasibility of obtaining novel alanine racemase inhibitor lead compounds by high-throughput screening for development of new anti-TB agents.  相似文献   

2.
The diaminopimelic acid pathway of lysine biosynthesis has been suggested to provide attractive targets for the development of novel antibacterial drugs. Here we report the characterization of two enzymes from this pathway in the human pathogen Pseudomonas aeruginosa, utilizing structural biology, biochemistry and genetics. We show that tetrahydrodipicolinate N-succinyltransferase (DapD) from P. aeruginosa is specific for the L-stereoisomer of the amino substrate L-2-aminopimelate, and its D-enantiomer acts as a weak inhibitor. The crystal structures of this enzyme with L-2-aminopimelate and D-2-aminopimelate, respectively, reveal that both compounds bind at the same site of the enzyme. Comparison of the binding interactions of these ligands in the enzyme active site suggests misalignment of the amino group of D-2-aminopimelate for nucleophilic attack on the succinate moiety of the co-substrate succinyl-CoA as the structural basis of specificity and inhibition. P. aeruginosa mutants where the dapA gene had been deleted were viable and able to grow in a mouse lung infection model, suggesting that DapA is not an optimal target for drug development against this organism. Structure-based sequence alignments, based on the DapA crystal structure determined to 1.6 Å resolution revealed the presence of two homologues, PA0223 and PA4188, in P. aeruginosa that could substitute for DapA in the P. aeruginosa PAO1ΔdapA mutant. In vitro experiments using recombinant PA0223 protein could however not detect any DapA activity.  相似文献   

3.
The antimicrobial activity of phenyl-thiazolylurea-sulfonamides against Staphylococcus aureus PheRS are dependent upon phenylalanine levels in the extracellular fluids. Inhibitor efficacy in animal models of infection is substantially diminished by dietary phenylalanine intake, thereby reducing the perceived clinical utility of this inhibitor class. The search for novel antibacterial compounds against Gram-negative pathogens led to a re-evaluation of this phenomenon, which is shown here to be unique to S. aureus. Inhibition of macromolecular syntheses and characterization of novel resistance mutations in Escherichia coli demonstrate that antimicrobial activity of phenyl-thiazolylurea-sulfonamides is mediated by PheRS inhibition, validating this enzyme as a viable drug discovery target for Gram-negative pathogens. A search for novel inhibitors of PheRS yielded three novel chemical starting points. NMR studies were used to confirm direct target engagement for phenylalanine-competitive hits. The crystallographic structure of Pseudomonas aeruginosa PheRS defined the binding modes of these hits and revealed an auxiliary hydrophobic pocket that is positioned adjacent to the phenylalanine binding site. Three viable inhibitor-resistant mutants were mapped to this pocket, suggesting that this region is a potential liability for drug discovery.  相似文献   

4.
Single dose high-throughput screening (HTS) followed by dose-response evaluations is a common strategy for the identification of initial hits for further development. Early identification and exclusion of false positives is a cost-saving and essential step in early drug discovery. One of the mechanisms of false positive compounds is the formation of aggregates in assays. This study evaluates the mechanism(s) of inhibition of a set of 14 compounds identified previously as actives in Mycobacterium tuberculosis (Mt) cell culture screening and in vitro actives in Mt shikimate kinase (MtSK) assay. Aggregation of hit compounds was characterized using multiple experimental methods, LC-MS, 1HNMR, dynamic light scattering (DLS), transmission electron microscopy (TEM), and visual inspection after centrifugation for orthogonal confirmation. Our results suggest that the investigated compounds containing oxadiazole-amide and aminobenzothiazole moieties are false positive hits and non-specific inhibitors of MtSK through aggregate formation.  相似文献   

5.
The rapid spread on multidrug-resistant strains of Staphylococcus aureus requires not just novel treatment options, but the development of faster methods for the identification of new hits for drug development. The exponentially increasing speed of computational methods makes a more extensive use in the early stages of drug discovery attractive if sufficient accuracy can be achieved. Computational target identification using systems-level methods suggested the histidine biosynthesis pathway as an attractive target against S. aureus. Potential inhibitors for the pathway were identified through docking, followed by ensemble rescoring, that is sufficiently accurate to justify immediate testing of the identified compounds by whole-cell assays, avoiding the need for time-consuming and often difficult intermediary enzyme assays. This novel strategy is demonstrated for three key enzymes of the S. aureus histidine biosynthesis pathway, which is predicted to be essential for bacterial biomass productions. Virtual screening of a library of ~106 compounds identified 49 potential inhibitors of three enzymes of this pathway. Eighteen representative compounds were directly tested on three S. aureus- and two Escherichia coli strains in standard disk inhibition assays. Thirteen compounds are inhibitors of some or all of the S. aureus strains, while 14 compounds weakly inhibit growth in one or both E. coli strains. The high hit rate obtained from a fast virtual screen demonstrates the applicability of this novel strategy to the histidine biosynthesis pathway.  相似文献   

6.

Background

Trypanosoma brucei, the causative agent of Human African Trypanosomiasis (HAT), expresses two proteins with homology to human glycogen synthase kinase 3β (HsGSK-3) designated TbruGSK-3 short and TbruGSK-3 long. TbruGSK-3 short has previously been validated as a potential drug target and since this enzyme has also been pursued as a human drug target, a large number of inhibitors are available for screening against the parasite enzyme. A collaborative industrial/academic partnership facilitated by the World Health Organisation Tropical Diseases Research division (WHO TDR) was initiated to stimulate research aimed at identifying new drugs for treating HAT.

Methodology/Principal Findings

A subset of over 16,000 inhibitors of HsGSK-3 β from the Pfizer compound collection was screened against the shorter of two orthologues of TbruGSK-3. The resulting active compounds were tested for selectivity versus HsGSK-3β and a panel of human kinases, as well as in vitro anti-trypanosomal activity. Structural analysis of the human and trypanosomal enzymes was also performed.

Conclusions/Significance

We identified potent and selective compounds representing potential attractive starting points for a drug discovery program. Structural analysis of the human and trypanosomal enzymes also revealed hypotheses for further improving selectivity of the compounds.  相似文献   

7.
The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant “superbug” for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery.  相似文献   

8.
Species-specific antimicrobial therapy has the potential to combat the increasing threat of antibiotic resistance and alteration of the human microbiome. We therefore set out to demonstrate the beginning of a pathogen-selective drug discovery method using the periodontal pathogen Porphyromonas gingivalis as a model. Through our knowledge of metabolic networks and essential genes we identified a “druggable” essential target, meso-diaminopimelate dehydrogenase, which is found in a limited number of species. We adopted a high-throughput virtual screen method on the ZINC chemical library to select a group of potential small-molecule inhibitors. Meso-diaminopimelate dehydrogenase from P. gingivalis was first expressed and purified in Escherichia coli then characterized for enzymatic inhibitor screening studies. Several inhibitors with similar structural scaffolds containing a sulfonamide core and aromatic substituents showed dose-dependent inhibition. These compounds were further assayed showing reasonable whole-cell activity and the inhibition mechanism was determined. We conclude that the establishment of this target and screening strategy provides a model for the future development of new antimicrobials.  相似文献   

9.
Microbes and plants synthesize essential branched-chain amino acids (BCAAs) such as valine, leucine, and isoleucine via a common biosynthetic pathway in which the first reaction is catalyzed by acetohydroxyacid synthase (AHAS, EC 4.1.3.18). Recently, AHAS was identified as a potential anti bacterial target. To help find an effective inhibitor that could act as an antibacterial compound, we cloned and characterized the catalytic subunit (CSU) of Pseudomonas aeruginosa AHAS, and found four potent inhibitors through chemical library screening. The ilvI gene of P. aeruginosa encodes a 65-kDa AHAS protein, consistent with the size of the purified enzyme on SDS-PAGE. Enzyme kinetics showed that the enzyme has a Km of 14.2 mM and a specific activity of 0.12 U/mg. Enzyme activity was optimum at a temperature of 37 °C and a pH of 7.5. The Kd for thiamine diphosphate (ThDP) was 89.92 ± 17.9 μM, as determined by fluorescence quenching. The cofactor activation constants (Ks) for ThDP and (Kc) for Mg2+ were 0.6 ± 0.1 and 560.8 ± 7.4 μM, respectively. Further, we determined that AVS2087, AVS2093, AVS2236, and AVS2387 compounds are potent inhibitors of the catalytic subunit of P. aeruginosa AHAS. These compounds inhibit nearly 100% of AHAS activity, with IC50 values of 1.19 μM, 5.0 nM, 25 nM, and 13 nM, respectively. Compound AVS2093 showed growth inhibition with a minimal inhibitory concentration (MIC) of 742.9 μg/ml against P. aeruginosa strain ATCC 9027. Furthermore, these findings were supported by molecular docking studies with the AVS compounds against P. aeruginosa AHAS in which AVS2093 showed minimum binding energy (−7.8 kJ/mol) by interacting with the receptor through a single hydrogen bond of 2.873 Å. Correlation of AVS2093 activity with P. aeruginosa AHAS cell growth inhibition suggested that AHAS might serve as a target protein for the development of novel antibacterial therapeutics. Results of the current study provide an impetus to further evaluate the potency of these inhibitors against pathogenic P. aeruginosa strains in vivo and to design more potent antibacterial agents based on these AVS inhibitors.  相似文献   

10.
The explosive epidemicity of amoebiasis caused by the facultative gastrointestinal protozoan parasite Entamoeba histolytica is a major public health problem in developing countries. Multidrug resistance and side effects of various available antiamoebic drugs necessitate the design of novel antiamobeic agents. The cysteine biosynthetic pathway is the critical target for drug design due to its significance in the growth, survival and other cellular activities of E. histolytica. Here, we have screened 0.15 million natural compounds from the ZINC database against the active site of the EhOASS enzyme (PDB ID. 3BM5, 2PQM), whose structure we previously determined to 2.4 Å and 1.86 Å resolution. For this purpose, the incremental construction algorithm of GLIDE and the genetic algorithm of GOLD were used. We analyzed docking results for top ranking compounds using a consensus scoring function of X-Score to calculate the binding affinity and using ligplot to measure protein-ligand interactions. Fifteen compounds that possess good inhibitory activity against EhOASS active site were identified that may act as potential high affinity inhibitors. In vitro screening of a few commercially available compounds established their biological activity. The first ranked compound ZINC08931589 had a binding affinity of ∼8.05 µM and inhibited about 73% activity at 0.1 mM concentration, indicating good correlation between in silico prediction and in vitro inhibition studies. This compound is thus a good starting point for further development of strong inhibitors.  相似文献   

11.
A high-throughput screening (HTS) campaign was carried out for Trypanosoma cruzi glucokinase (TcGlcK), a potential drug-target of the pathogenic protozoan parasite. Glycolysis and the pentose phosphate pathway (PPP) are important metabolic pathways for T. cruzi and the inhibition of the glucose kinases (i.e. glucokinase and hexokinase) may be a strategic approach for drug discovery. Glucose kinases phosphorylate d-glucose with co-substrate ATP to yield G6P, and moreover, the produced G6P enters both pathways for catabolism. The TcGlcK – HTS campaign revealed 25 novel enzyme inhibitors that were distributed in nine chemical classes and were discovered from a primary screen of 13,040 compounds. Thirteen of these compounds were found to have low micromolar IC50 enzyme – inhibition values; strikingly, four of those compounds exhibited low toxicity towards NIH-3T3 murine host cells and notable in vitro trypanocidal activity. These compounds were of three chemical classes: (a) the 3-nitro-2-phenyl-2H-chromene scaffold, (b) the N-phenyl-benzenesulfonamide scaffold, and (c) the gossypol scaffold. Two compounds from the 3-nitro-2-phenyl-2H-chromene scaffold were determined to be hit-to-lead candidates that can proceed further down the early-stage drug discovery process.  相似文献   

12.
Methicillin resistant Staphylococcus aureus (MRSA) is one of the challenging bacterial pathogen due to its acquired resistance to the β lactam antibiotics. The Sortase A is an enzyme of Gram-positive bacteria including S. aureus to anchor surface proteins to the cell wall. Sortase A is well studied enzyme and considered as the drug target against MRSA. Sortase A plays active role in anchoring the virulence proteins on the cell wall of the Gram-positive bacteria. The inhibition of Sortase A activity results in the separation of S. aureus from the host cells and ultimately alleviation of the infection. Here, we adapted a structure-based virtual screening protocol which helped in identification of novel potential inhibitors of Sortase A. The protocol involved the docking of a chemical library of druglike compounds with the Sortase A binding site represented by multiple crystal structures. The compounds were ranked by multiple scoring functions and shortlisted for future experimental screening. The method resulted in shortlisting of three compounds as potential novel inhibitors of Sortase A out of a large chemical library. The high rankings of shortlisted compounds estimated by multiple scoring functions showed their binding potential with Sortase A. The results are proved to be a simple yet efficient choice of structure-based virtual screening. The identified compounds are druglike and show high rankings among all set protocols of the virtual screening. We hope that the study would eventually help to expedite the discovery of novel drug candidates against MRSA.  相似文献   

13.
Quorum sensing (QS) is a system of stimuli and responses in bacterial cells governed by their population density, through which they regulate genes that control virulence factors and biofilm formation. Despite considerable research on QS and the discovery of new antibiotics, QS-controlled biofilm formation by microorganisms in clinical settings has remained a problem because of nascent drug resistance, which requires screening of diverse compounds for anti-QS activities. Cinnamon is a dietary phytochemical that is traditionally used to remedy digestive problems and assorted contagions, which suggests that cinnamon might contain chemicals that can hinder the QS process. To test this hypothesis, the anti-QS activity of cinnamon oil against P. aeruginosa was tested, measured by the inhibition of biofilm formation and other QS-associated phenomena, including virulence factors such as pyocyanin, rhamnolipid, protease, alginate production, and swarming activity. To this end, multiple microscopy analyses, including light, scanning electron and confocal microscopy, revealed the ability of cinnamon oil to inhibit P. aeruginosa PAO1 biofilms and their accompanying extracellular polymeric substances. This work is the first to demonstrate that cinnamon oil can influence various QS-based phenomena in P. aeruginosa PAO1, including biofilm formation.  相似文献   

14.
Pseudomonas aeruginosa and Escherichia coli are resistant to wide range of antibiotics rendering the treatment of infections very difficult. A main mechanism attributed to the resistance is the function of efflux pumps. MexAB-OprM and AcrAB-TolC are the tripartite efflux pump assemblies, responsible for multidrug resistance in P. aeruginosa and E. coli respectively. Substrates that are more susceptible for efflux are predicted to have a common pharmacophore feature map. In this study, a new criterion of excluding compounds with efflux substrate-like features was used, thereby refining the selection process and enriching the inhibitor identification process. An in-house database of phytochemicals was created and screened using high-throughput virtual screening against AcrB and MexB proteins and filtered by matching with the common pharmacophore models (AADHR, ADHNR, AAHNR, AADHN, AADNR, AAADN, AAADR, AAANR, AAAHN, AAADD and AAADH) generated using known efflux substrates. Phytochemical hits that matched with any one or more of the efflux substrate models were excluded from the study. Hits that do not have features similar to the efflux substrate models were docked using XP docking against the AcrB and MexB proteins. The best hits of the XP docking were validated by checkerboard synergy assay and ethidium bromide accumulation assay for their efflux inhibition potency. Lanatoside C and diadzein were filtered based on the synergistic potential and validated for their efflux inhibition potency using ethidium bromide accumulation study. These compounds exhibited the ability to increase the accumulation of ethidium bromide inside the bacterial cell as evidenced by these increase in fluorescence in the presence of the compounds. With this good correlation between in silico screening and positive efflux inhibitory activity in vitro, the two compounds, lanatoside C and diadzein could be promising efflux pump inhibitors and effective to use in combination therapy against drug resistant strains of P. aeruginosa and E. coli.  相似文献   

15.
trans-Sialidase from Trypanosoma cruzi (TcTS) has emerged as a potential drug target for treatment of Chagas disease. Here, we report the results of virtual screening for the discovery of novel TcTS inhibitors, which targeted both the sialic acid and sialic acid acceptor sites of this enzyme. A library prepared from the Evotec database of commercially available compounds was screened using the molecular docking program GOLD, following the application of drug-likeness filters. Twenty-three compounds selected from the top-scoring ligands were purchased and assayed using a fluorimetric assay. Novel inhibitor scaffolds, with IC50 values in the submillimolar range were discovered. The 3-benzothiazol-2-yl-4-phenyl-but-3-enoic acid scaffold was studied in more detail, and TcTS inhibition was confirmed by an alternative sialic acid transfer assay. Attempts to obtain crystal structures of these compounds with TcTS proved unsuccessful but provided evidence of ligand binding at the active site.  相似文献   

16.
In the interest of identification of new kinase-targeting chemotypes for target and pathway analysis and drug discovery in Trypanosomal brucei, a high-throughput screen of 42,444 focused inhibitors from the GlaxoSmithKline screening collection was performed against parasite cell cultures and counter-screened against human hepatocarcinoma (HepG2) cells. In this way, we have identified 797 sub-micromolar inhibitors of T. brucei growth that are at least 100-fold selective over HepG2 cells. Importantly, 242 of these hit compounds acted rapidly in inhibiting cellular growth, 137 showed rapid cidality. A variety of in silico and in vitro physicochemical and drug metabolism properties were assessed, and human kinase selectivity data were obtained, and, based on these data, we prioritized three compounds for pharmacokinetic assessment and demonstrated parasitological cure of a murine bloodstream infection of T. brucei rhodesiense with one of these compounds (NEU-1053). This work represents a successful implementation of a unique industrial-academic collaboration model aimed at identification of high quality inhibitors that will provide the parasitology community with chemical matter that can be utilized to develop kinase-targeting tool compounds. Furthermore these results are expected to provide rich starting points for discovery of kinase-targeting tool compounds for T. brucei, and new HAT therapeutics discovery programs.  相似文献   

17.
Stearoyl-CoA desaturase (SCD) catalyzes the synthesis of monounsaturated fatty acids and has been implicated in a number of disease states, including obesity and diabetes. To find small-molecule inhibitor leads, a high-throughput scintillation proximity assay (SPA) was developed using the hydrophobic binding characteristics of a glass microsphere scintillant bead to capture SCD1 from a crude lysate of recombinant SCD1 in Sf9 lysate coupled with the strong binding characteristics of an azetidine compound ([(3)H]AZE). The SPA assay was stable over 24 h and could detect compounds with micromolar to nanomolar potencies. A robust 1536-well high-throughput screening assay was developed with good signal-to-noise ratio (10:1) and excellent Z' factor (0.8). A screening collection of 1.6 million compounds was screened at 11 μM, and approximately 7700 compounds were identified as initial hits, exhibiting at least 35% inhibition of [(3)H]AZE binding. Further screening and confirmation with an SCD enzyme activity assay led to a number of new structural leads for inhibition of the enzyme. The SPA assay complements the enzyme activity assay for SCD1 as a tool for the discovery of novel leads in drug discovery.  相似文献   

18.
In the search for new therapeutics for the treatment of human African trypanosomiasis, many potential drug targets in Trypanosoma brucei have been validated by genetic means, but very few have been chemically validated. Trypanothione synthetase (TryS; EC 6.3.1.9; spermidine/glutathionylspermidine:glutathione ligase (ADP-forming)) is one such target. To identify novel inhibitors of T. brucei TryS, we developed an in vitro enzyme assay, which was amenable to high throughput screening. The subsequent screen of a diverse compound library resulted in the identification of three novel series of TryS inhibitors. Further chemical exploration resulted in leads with nanomolar potency, which displayed mixed, uncompetitive, and allosteric-type inhibition with respect to spermidine, ATP, and glutathione, respectively. Representatives of all three series inhibited growth of bloodstream T. brucei in vitro. Exposure to one of our lead compounds (DDD86243; 2 × EC50 for 72 h) decreased intracellular trypanothione levels to <10% of wild type. In addition, there was a corresponding 5-fold increase in the precursor metabolite, glutathione, providing strong evidence that DDD86243 was acting on target to inhibit TryS. This was confirmed with wild-type, TryS single knock-out, and TryS-overexpressing cell lines showing expected changes in potency to DDD86243. Taken together, these data provide initial chemical validation of TryS as a drug target in T. brucei.  相似文献   

19.
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen and a primary cause of infection in humans. P. aeruginosa can acquire resistance against multiple groups of antimicrobial agents, including β-lactams, aminoglycosides and fluoroquinolones, and multidrug resistance is increasing in this organism which makes treatment of the infections difficult and expensive. This has led to the unmet need for discovery of new compounds distinctly different from present antimicrobials. Protein synthesis is an essential metabolic process and a validated target for the development of new antibiotics. Translation initiation factor 1 from P. aeruginosa (Pa-IF1) is the smallest of the three initiation factors that acts to establish the 30S initiation complex to initiate translation during protein biosynthesis, and its structure is unknown. Here we report the 1H, 13C and 15N chemical shift assignments of Pa-IF1 as the basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified five β-strands with an unusually extended β-strand at the C-terminal end of the protein and one short α-helix arranged in the sequential order β1–β2–β3–α1–β4–β5. This is further supported by 15N–{1H} hetero NOEs. These secondary structure elements suggest the Pa-IF1 adopts the typical β-barrel structure and is composed of an oligomer-binding motif.  相似文献   

20.
The increasing risk of drug-resistant bacterial infections indicates that there is a growing need for new and effective antimicrobial agents. One promising, but unexplored area in antimicrobial drug design is de novo purine biosynthesis. Recent research has shown that de novo purine biosynthesis in microbes is different from that in humans. The differences in the pathways are centered around the synthesis of 4-carboxyaminoimidazole ribonucleotide (CAIR) which requires the enzyme N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) synthetase. Humans do not require and have no homologs of this enzyme. Unfortunately, no studies aimed at identifying small-molecule inhibitors of N5-CAIR synthetase have been published. To remedy this problem, we have conducted high-throughput screening (HTS) against Escherichia coli N5-CAIR synthetase using a highly reproducible phosphate assay. HTS of 48,000 compounds identified 14 compounds that inhibited the enzyme. The hits identified could be classified into three classes based on chemical structure. Class I contains compounds with an indenedione core. Class II contains an indolinedione group, and Class III contains compounds that are structurally unrelated to other inhibitors in the group. We determined the Michaelis–Menten kinetics for five compounds representing each of the classes. Examination of compounds belonging to Class I indicates that these compounds do not follow normal Michaelis–Menten kinetics. Instead, these compounds inhibit N5-CAIR synthetase by reacting with the substrate AIR. Kinetic analysis indicates that the Class II family of compounds are non-competitive with both AIR and ATP. One compound in Class III is competitive with AIR but uncompetitive with ATP, whereas the other is non-competitive with both substrates. Finally, these compounds display no inhibition of human AIR carboxylase:SAICAR synthetase indicating that these agents are selective inhibitors of N5-CAIR synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号