首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic AMP (cAMP) blocks Raf-1 activation by stimulating its phosphorylation on serine 43 (Ser43), serine 233 (Ser233), and serine 259 (Ser259). We show here that phosphorylation of all three sites blocks Raf-1 binding to Ras.GTP in vivo and that cAMP stimulates binding of 14-3-3 proteins to Ser233 and Ser259. We also show that Raf-1 and protein kinase A (PKA) form a complex in vivo that is disrupted by cAMP and that ablation of PKA by use of small interfering RNA blocks phosphorylation by cAMP. The ability of PKA to block Raf-1 activation is ablated by the PKA inhibitor H89. These studies suggest that Raf-1 and cAMP form a signaling complex in cells. Upon activation of PKA, Raf-1 is phosphorylated and 14-3-3 binds, blocking Raf-1 recruitment to the plasma membrane and preventing its activation.  相似文献   

2.
The recent crystal structure of Pin1 protein bound to a doubly phosphorylated peptide from the C-terminal domain of RNA polymerase II revealed that binding interactions between Pin1 and its substrate take place through its Trp-Trp (WW) domain at the level of the loop Ser(11)-Arg(12) and the aromatic pair Tyr(18)-Trp(29), and showed a trans conformation for both pSer-Pro peptide bonds. However, the orientation of the ligand in the aromatic recognition groove still could be sequence-specific, as previously observed in SH3 domains complexed by peptide ligands or for different class of WW domains (Zarrinpar, A., and Lim, W. A. (2000) Nat. Struct. Biol. 7, 611-613). Because the bound peptide conformation could also differ as observed for peptide ligands bound to the 14-3-3 domain, ligand orientation and conformation for two other biologically relevant monophosphate substrates, one derived from the Cdc25 phosphatase of Xenopus laevis (EQPLpTPVTDL) and another from the human tau protein (KVSVVRpTPPKSPS) in complex with the WW domain are here studied by solution NMR methods. First, the proton resonance perturbations on the WW domain upon complexation with both peptide ligands were determined to be essentially located in the positively charged beta-hairpin Ser(11)-Gly(15) and around the aromatic Trp(29). Dissociation equilibrium constants of 117 and 230 microm for Cdc25 and tau peptides, respectively, were found. Several intermolecular nuclear Overhauser effects between WW domain and substrates were obtained from a ligand-saturated solution and were used to determine the structures of the complexes in solution. We found a similar N to C orientation as the one observed in the crystal complex structure of Pin1 and a trans conformation for the pThr-Pro peptidic bond in both peptide ligands, thereby indicating a unique binding scheme for the Pin1 WW domain to its multiple substrates.  相似文献   

3.
Study of interaction of the antitumor alkylating drug triethylenethiophosphoramide (thioTEPA) with nucleotides (dGMP and dCMP) suggests highly perspective employment of 252-Cf fission fragment induced desorption mass spectrometry (252-Cf PDMS) in biochemical pharmacology. Using the 252-Cf PDMS the molecular masses of the unstable, unvolatile, high-molecular substances of biological origin and the chemical adducts or complexes with drugs can be used to establish some structural-functional parameters of the above mentioned biomolecules and their derivatives in microvolumes of the incubation medium. The resulting data may be used for modelling chemotherapeutic processes of "drug-biomolecule-target" type. Using 252-Cf PDMS the complexes (dGMP (thioTEPA) n), n = 1, 2, 3 and (dCMP (thioTEPA) n), n = 1, were obtained. Some quantitative parameters and stability of these complexes were studied. Binding of dGMP with drug in the presence of dCMP was shown preferential. The data are compatible with the predictions concerning the mechanism of the antitumor property of the thioTEPA which can be manifested in the impairment structure of DNA of the malignant cells.  相似文献   

4.
Electrospray ionization mass spectrometry (ESI-MS) was used to measure the binding of Cu2+ ions to synthetic peptides corresponding to sections of the sequence of the mature prion protein (PrP). ESI-MS demonstrates that Cu2+ is unique among divalent metal ions in binding to PrP and defines the location of the major Cu2+ binding site as the octarepeat region in the N-terminal domain, containing multiple copies of the repeat ProHisGlyGlyGlyTrpGlyGln. The stoichiometries of the complexes measured directly by ESI-MS are pH dependent: a peptide containing four octarepeats chelates two Cu2+ ions at pH 6 but four at pH 7.4. At the higher pH, the binding of multiple Cu2+ ions occurs with a high degree of cooperativity for peptides C-terminally extended to incorporate a fifth histidine. Dissociation constants for each Cu2+ ion binding to the octarepeat peptides, reported here for the first time, are mostly in the low micromolar range; for the addition of the third and fourth Cu2+ ions to the extended peptides at pH 7.4, K(D)'s are <100 nM. N-terminal acetylation of the peptides caused some reduction in the stoichiometry of binding at both pH's. Cu2+ also binds to a peptide corresponding to the extreme N-terminus of PrP that precedes the octarepeats, arguing that this region of the sequence may also make a contribution to the Cu2+ complexation. Although the structure of the four-octarepeat peptide is not affected by pH changes in the absence of Cu2+, as judged by circular dichroism, Cu2+ binding induces a modest change at pH 6 and a major structural perturbation at pH 7.4. It is possible that PrP functions as a Cu2+ transporter by binding Cu2+ ions from the extracellular medium under physiologic conditions and then releasing some or all of this metal upon exposure to acidic pH in endosomes or secondary lysosomes.  相似文献   

5.
Several neuropeptide FF (NPFF)-related peptides, known as modulators of the opioid system, have been previously characterized in bovine and rodent brain. Reverse-phase high pressure liquid chromatography (HPLC) fractions of a human with normal pressure hydrocephalus cerebrospinal fluid (CSF), co-migrating with NPFF-related synthetic peptides, were characterized by capillary HPLC coupled on-line to nanospray ion trap tandem mass spectrometry. Two peptides present in the pro-NPFF(A) precursor, NPAF (AGEGLNSQFWSLAAPQRF-NH2) and NPSF (SLAAPQRF-NH2), were identified. The monitoring of NPFF-related peptides in human CSF can be helpful to understand their roles in pain sensitivity.  相似文献   

6.
Here, we present a new approach for protein ligand screening based on the use of limited exoproteolysis coupled to MALDI-TOF mass spectrometry, combined with computational modelling and prediction of binding energies. As a test for this combined approach, we have screened a combinatorial library containing 8000 peptides (organized in 60 peptide samples) based on positional scanning format. This library is attached to a poly-Pro framework, and screened against the Abl-SH3 domain. The results obtained demonstrated the validity of the experimental and theoretical approaches in identifying better ligands and in rationalizing the changes in affinity. Exoproteolysis coupled to MALDI-TOF mass spectrometry could be used to screen complex libraries in a fast and efficient way.  相似文献   

7.
Analysis of phosphorylated proteins and peptides by mass spectrometry   总被引:7,自引:0,他引:7  
Phosphorylation on serine, threonine and tyrosine residues is an extremely important modulator of protein function. Therefore, there is a great need for methods capable of accurately elucidating sites of phosphorylation. Although full characterization of phosphoproteins remains a formidable analytical challenge, mass spectrometry has emerged as an increasingly viable tool for this task. This review summarizes the methodologies currently available for the analysis of phosphoproteins by mass spectrometry, including enrichment of compounds of interest using immobilized metal affinity chromatography and chemical tagging techniques, detection of phosphopeptides using mass mapping and precursor ion scans, localization of phosphorylation sites by peptide sequencing, and quantitation of phosphorylation by the introduction of mass tags. Despite the variety of powerful analytical methods that are now available, complete characterization of the phosphorylation state of a protein isolated in small quantities from a biological sample remains far from routine.  相似文献   

8.
There are four isoforms of centrin in mammals, with variable sequence, tissue expression, and functional properties. We have recently characterized a number of structural, ion, and target binding properties of human centrin isoform HsCen2. This paper reports a similar characterization of HsCen3, overexpressed in Escherichia coli and purified by phase-reversed chromatography. Equilibrium and dynamic binding studies revealed that HsCen3 has one mixed Ca(2+)/Mg(2+) binding site of high affinity (K(d) = 3 and 10 microM for Ca(2+) and Mg(2+), respectively) and two Ca(2+)-specific sites of low affinity (K(d) = 140 microM). The metal-free protein is fragmented by an unidentified protease into a polypeptide segment of 11 kDa, which was purified by HPLC, and identified by mass spectrometry as the segment of residues 21-112. Similarly, controlled trypsinolysis on Ca(2+)-bound HsCen3 yielded a mixture of segments of residues 1-124 and 1-125. The Ca(2+)/Mg(2+) site could be assigned to this segment and thus resides in the N-terminal half of HsCen3. Temperature denaturation experiments, circular dichroism, and utilization of fluorescence hydrophobic probes allowed us to propose that the metal-free protein has molten globule characteristics and that the dication-bound forms are compact with a polar surface for the Mg(2+) form and a hydrophobic exposed surface for the Ca(2+) form. Thus, HsCen3 could be classified as a Ca(2+) sensor protein. In addition, it is able to bind strongly to a model target peptide (melittin), as well as to peptides derived from the protein XPC and Kar1p, with a moderate Ca(2+) dependence.  相似文献   

9.
The analysis of iodinated peptides resulting from chloramine-T (CAT), Iodo-Beads, Iodo-Gen and lactoperoxidase iodination reactions in the preparation of nanomole quantities 125I and 123I labelled tracers is described. Seven different model peptides were evaluated, varying in molecular weight from 294 (LY-dipeptide) to 2518 (obestatin containing 23 amino acid residues). Two different RP-C18 columns were used, each with a different gradient system based on aqueous formic acid and acetonitrile. Electrospray ionization (ESI) ion trap mass spectrometry was used for identification of the chromatographic eluting components of the reaction mixtures, while UV (DAD) served quantitative purposes. Non-, mono-, di-, tri- and tetra-iodinated peptides (respectively NIP, MIP, DIP, 3IP and 4IP) eluted in that order and were well separated from each other. An empirical model was derived. The applicability of this approach was demonstrated by the analysis of different reaction mixtures.  相似文献   

10.
Methods are described that allow the combination of established techniques for peptide separation, paper chromatography and electrophoresis, with mass spectrometry. The development of these methods is part of an ongoing effort in the search for a methodology for the systematic utilization of mass spectrometry for the elucidation of primary structure of proteins and peptides. Peptides and amino acids are detected on chromatograms by conversion to covalent derivatives that are also suitable for mass spectrometry. The most useful reagents for detection and derization of peptides reported here are dansyl chloride, N,N-dimethylaminobenzaldehyde, N,N-dimethylaminocinnamaldehyde, and N-hydroxysuccinimido β-naphthoate. Detection limits and mass spectra for some of these derivatives are reported.  相似文献   

11.
Characterization of protein-carbohydrate interactions at the molecular level is important for understanding many glycan-mediated processes. Here we present a method for the identification of glycan ligands of carbohydrate-binding proteins. The glycans released from natural sources are labeled with biotinamidocaproyl hydrazide (BACH) and subsequently fractionated by high-performance liquid chromatography. Glycan fractions are screened for binding to carbohydrate-binding proteins (CBPs) using a microtitration plate binding assay; CBPs are immobilized, BACH-glycan fractions are added, and bound BACH-glycans are detected using alkaline phosphatase-conjugated streptavidin. The glycan structures in binding fractions are studied by (tandem) mass spectrometry, exoglycosidase treatment, and rechromatography, thereby revealing the glycan motifs recognized by the CBPs. Subsequent surface plasmon resonance experiments using a reverse setup with immobilization of the BACH-glycan ligands on streptavidin-coated surfaces provide more information on glycan-CBP interactions via association and dissociation curves. The presented method is easy and fast, and the required instrumentation is available in many laboratories. The assay is very sensitive given that both the mass spectrometric analysis and the microtitration plate binding assay can be performed on femtomole amounts of BACH-glycans. This approach should be generally applicable to study and structurally identify carbohydrate ligands of anti-glycan antibodies and lectins.  相似文献   

12.
13.
The amino acid ornithine (Orn) acts as a vital part in the physiologically fundamental urea cycle. As such, it is a main intermediate in the catabolic breakdown as well as in the synthesis of arginine and is involved in many other metabolic pathways with potential clinical implications. We here describe a LC-MS-MS method for the detection of Orn in human plasma which is fast, easy and precise. The sample preparation comprises only protein precipitation and the addition of the isotopic labeled I.S. The analytes are separated by hydrophilic interaction chromatography (HILIC) in less than 4min on a silica column with an isocratic mobile phase consisting of 0.1% trifluoroacetic acid in water and acetonitrile in the ratio of 25:75. Orn and its I.S. are detected and quantified by APCI tandem mass spectrometry. The calibration function is linear from 7.5 to 205 micromol/l and covers the range of concentrations found in patients undergoing different clinical interventions. The quantification results are independent with regard to the biological matrix analyzed. The intra-day and inter-day relative standard deviations are 1.1% and 3.5%, respectively. As an application of the described method in clinical investigations, we report arginine and ornithine plasma concentration results from an arginine supplementation study enrolling healthy volunteers and patients suffering from hypercholesterolemia. After oral dosing of 110 mg/kg arginine, ornithine plasma concentrations rose from 54 to 148 micromol/l after 2h and were back to baseline after 24h. However, arginine to ornithine ratios kept constant during the complete observation time.  相似文献   

14.
Extensive 1H and 15H NMR investigations of the nucleotide moieties capable of hydrogen bonding to ribonuclease A were carried out in order to gain more detailed information on the specificity of nucleotide-enzyme interaction. The 1H investigations focussed on those protons presumed to be involved in hydrogen bonding between the various nucleotides and the enzyme. In particular these were the imino protons of the uridine nucleotides and the amino protons of the cytidine nucleotides. The technique of 15N-1H double quantum filtering was applied for observation of the resonances of the latter in the nucleotide-enzyme complex. The downfield shift observed for the imino proton resonance of the uridine nucleotides was indicative of hydrogen bond formation to the enzyme. 15N NMR spectra of the free nucleotides and the nucleotide-enzyme complexes were also acquired to examine the possibility of hydrogen bond formation at the N3 site of both pyrimidine bases and the amino group of the cytidine nucleotides. The downfield shift observed for the 15N3 resonance of the uridine nucleotides and the upfield shift observed for the corresponding resonance of the cytidine nucleotides was evidence that the N3 moiety acts as hydrogen donor or hydrogen acceptor in the nucleotide-enzyme complex. The effect of complex formation on the 15N1 resonance of the respective bases was also studied. Both 1H and 15N NMR results indicated subtle differences between the complexes of the 2' and 3' nucleotides. The extent of hydrogen bonding as well as the arrangement of the nucleotide base at the active site of the enzyme varies in dependence on the position of the phosphate group. It is established that hydrogen bonding, though not the main binding force between the nucleotides and the enzyme, is certainly a major factor of RNase A specificity for pyrimidine nucleotides.  相似文献   

15.
Smirnova J  Muhhina J  Tõugu V  Palumaa P 《Biochemistry》2012,51(29):5851-5859
Insulin-like growth factor 1 (IGF-1) is a 70-residue hormone containing three intramolecular disulfide bridges. IGF-1 and other growth factors are oxidatively folded in the endoplasmic reticulum and act primarily in the blood, under relatively oxidative conditions. It is known that IGF-1 exists in various intracellular and extracellular compartments in the oxidized form; however, the reduction potential of IGF-1 and the ability of fully reduced IGF-1, which contains six cysteine residues, to bind transition metal ions are not known. In this work, we determine that the redox potential of human IGF-1 is equal to -332 mV and the reduced form of hIGF-1 can bind cooperatively four Cu(+) ions, most probably into a tetracopper-hexathiolate cluster. The Cu(+) binding affinity of hIGF-1 is, however, approximately 3 times lower than that for the copper chaperones; thus, we can conclude that fully reduced hIGF-1 cannot compete with known Cu(+)-binding proteins.  相似文献   

16.
ADP and ATP form in acidic aqueous solutions strong complexes with Mo(VI) oxocations in different stoichiometries. Complexation occurs predominantly, if not exclusively, through the phosphate groups of the nucleotides.  相似文献   

17.
The applicability of the less specific protease elastase for the identification of membrane and cytosolic proteins has already been demonstrated. MALDI as ionization technique particularly favors the detection of basic and to a lesser extent of weakly acidic peptides, whereas neutral peptides often remain undetected. Moreover, peptides below 700 Da are routinely excluded. In the following study, the advantage of additional information gained from tandem mass tag zero labeled peptides and the resultant increase in sequence coverage was evaluated. Through derivatization with tandem mass tag reagents, peptide measurement within the standard mass range of the MALDI reflector mode is achievable due to the mass increase. Compared to the unlabeled sample, peptides exhibiting relatively low molecular masses, pI values or higher hydrophobicity could be identified.  相似文献   

18.
In addition to reducing the analysis time, the direct examination of proteolytic digests by fast atom bombardment mass spectrometry (FABMS) greatly extends the information that is available from peptide mapping experiments. Mass spectral data are particularly useful for identifying post-translationally modified peptides. For example, the molecular weight of a disulfide-containing peptide may be used to locate the disulfide bond in the protein from which the peptide was derived. This paper describes a new procedure, which is useful for identifying disulfide-bonded peptides. Peptides are treated with performic acid to modify certain residues and thereby cause a characteristic change in the peptide molecular weight. This change in molecular weight is determined by FABMS and used to help identify peptides. Results for a series of small peptides demonstrate that Cys, Met, and Trp are the only residues that undergo a change in molecular weight under the conditions used here. Furthermore, these changes in molecular weight are diagnostic for each of the residues. Cysteinyl-containing peptides are of particular interest, because their identification is essential for locating disulfide bonds. The molecular weight of a peptide increases by 48 mu for each cysteinyl residue present. This approach is used to identify peptides that contain both cysteinyl and cystinyl residues in the peptic digest of bovine insulin. The method is extended to the analysis of a tryptic digest of cyanogen bromide-treated ribonuclease A. A computer-assisted analysis procedure is used to demonstrate the specificity with which peptide molecular weight is related to specific segments of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Breastfeeding is now generally recognized as a critical factor in protecting newborns against infections. An important mechanism responsible for the antibacterial and antiviral effects of breast milk is the prevention of pathogen adhesion to host cell membranes mediated by a number of glycoconjugates, also including glycoproteins. A number of approaches to describe the complexity of human milk proteome have provided only a partial characterization of restricted classes of N-linked glycoproteins. To achieve this objective, profiling N-linked glycoproteins of human milk was performed by Hydrophilic Interaction LC (HILIC) and MS analysis. Glycopeptides were selectively enriched from the protein tryptic digest of human milk samples. Oligosaccharide-free peptides obtained by peptide N-glycosidase F (PNGase F) treatment were characterized by a shotgun MS-based approach, allowing the identification of N-glycosylated sites localized on proteins. Using this strategy, 32 different glycoproteins were identified and 63 N-glycosylated sites encrypted in them were located. The glycoproteins include immunocompetent factors, membrane fat globule-associated proteins, enzymes involved in lipid degradation and cell differentiation, specific receptors, and other gene products with still unknown functions.  相似文献   

20.
Nucleotide excision repair (NER) is the process responsible for eliminating most ultraviolet (UV) radiation damage from DNA, as well as base alterations caused by a variety of mutagens. The xeroderma pigmentosum group A complementing protein (XPA) is believed to be involved in the early step of NER by recognizing and binding damaged DNA. Recent work has suggested that electrospray ionization-mass spectrometry (ESI-MS) can be an effective tool for the study of protein-DNA complexes. We have used ESI-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to examine the cisplatin-adducted oligonucleotide and its interaction with the human XPA minimal binding domain (XPA-MBD). High-resolution FTICR experiments of the binding products showed that both double-stranded damaged 20-mer and double-stranded undamaged 20-mer formed 1:1 noncovalent complexes with XPA-MBD. A 2:1 binding stoichiometry complex was also observed between XPA-MBD and double-stranded damaged 20-mer. Competitive binding experiments indicated only slightly preferential binding of XPA-MBD with the double-stranded damaged 20-mer compared to the undamaged 20-mer. The results demonstrate that ESI-FTICR mass spectrometry provides a fast and efficient approach for characterizing weak protein-DNA interactions such as the binding between XPA-MBD and a 20-mer oligonucleotide system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号