首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mycoplasma genitalium is the smallest self-replicating microorganism and is implicated in human diseases, including urogenital and respiratory infections and arthritides. M. genitalium colonizes host cells primarily through adherence mechanisms mediated by a network of surface-associated membrane proteins, including adhesins and cytadherence-related proteins. In this paper, we show that cytadherence in M. genitalium is affected by an unrelated protein known as peptide methionine sulfoxide reductase (MsrA), an antioxidant repair enzyme that catalyzes the reduction of methionine sulfoxide [Met(O)] residues in proteins to methionine. An msrA disruption mutant of M. genitalium, constructed through homologous recombination, displayed markedly reduced adherence to sheep erythrocytes. In addition, the msrA mutant was incapable of growing in hamsters and exhibited hypersensitivity to hydrogen peroxide when compared to wild-type virulent M. genitalium. These results indicate that MsrA plays an important role in M. genitalium pathogenicity, possibly by protecting mycoplasma protein structures from oxidative damage or through alternate virulence-related pathways.  相似文献   

2.
Defending phagocyte generated oxidants is the key for survival of Salmonella Typhimurium (S. Typhimurium) inside the host. Met residues are highly prone to oxidation and convert into methionine sulfoxide (Met-SO). Methionine sulfoxide reductase (Msr) can repair Met-SO to Met thus restoring the function(s) of Met-SO containing proteins. Using pull down method we have identified several MsrA interacting proteins in the S. Typhimurium, one of them was malate synthase (MS). MS is an enzyme of glyoxylate cycle. This cycle is essential for survival of S. Typhimurium inside the host under nutrient limiting conditions. By employing in vitro cross-linking and blot overlay techniques we showed that purified MsrA interacted with pure MS. Treatment of pure malate synthase with H2O2 resulted in reduction of MS activity. However, MsrA along with thioredoxin-thioredoxin reductase system partially restored the activity of oxidized MS. Our mass spectrometry data demonstrated H2O2 mediated oxidation and MsrA mediated repair of Met residues in MS. Further in comparison to S. Typhimurium, the msrA gene deletion (∆ msrA) strain showed reduced (60%) malate synthase specific activity. Oral inoculation with wild type, ∆ msrA and ∆ ms strains of S. Typhimurium resulted in colonization of 100, 0 and 40% of the poultry respectively.  相似文献   

3.
Influenza virus matrix 1 protein (M1) is highly conserved and plays essential roles at many stages of virus life cycle. Here, we used a yeast two‐hybrid system to identify the host protein SLD5, a component of the GINS complex, which is essential for the initiation of DNA replication in eukaryotic cells, as a new M1 interacting protein. M1 from several different influenza virus strains all interacted with SLD5. Overexpression of SLD5 suppressed influenza virus replication. Transient, stable, or inducible expression of M1 induced host cell cycle blockade at G0/G1 phase. Moreover, SLD5 partially rescued M1 expression‐ or influenza virus infection‐induced G0/G1 phase accumulation in cell lines and primary mouse embryonic fibroblasts. Importantly, SLD5 transgenic mice exhibited higher resistance and improved lung epithelial regeneration after virus infection compared with wild‐type mice. Therefore, influenza virus M1 blocks host cell cycle process by interacting with SLD5. Our finding reveals the multifunctional nature of M1 and provides new insight for understanding influenza virus–host interaction.  相似文献   

4.
为了解生殖支原体(Mg)潜在的致病性及其脂质相关膜蛋白(LAMPs)诱导人单核细胞(THP-1)凋亡及表达前炎症细胞因子(CKs)的分子机制,用Mg提取的LAMPs刺激THP-1细胞,以ELISA法和RT-PCR方法分析CKs产生和其mRNA的表达。不同试实验组的细胞经AnnexinV联合PI染色后通过流式细胞仪检测细胞凋亡。采用EMSA方法检测LAMPs处理的THP-1细胞中核转录因子kappaB(NF-κB)的激活,并分析NF-κB抑制剂二硫代氨基甲酸吡咯烷(pyrrolidine dithiocoarbamate,PDTC)对LAMPs处理的THP-1细胞产生CKs的量和其mRNA表达及细胞凋亡的影响。LAMPs能以时间和剂量依赖方式刺激THP-1细胞产生TNF-α、IL-1β和IL-6,且能激活NF-κB诱导THP-1细胞表达CKs的mRNA及发生凋亡,PDTC能显著抑制CKs的mRNA表达水平和细胞凋亡。由于LAMPs能激活NF-κB诱导THP-1细胞表达CKs及产生细胞凋亡,因而可能是一个重要的致病因素。  相似文献   

5.
The metabolism of S. Typhimurium within infected host cells plays a fundamental role in virulence since it enables intracellular proliferation and dissemination and affects the innate immune response. An essential requirement for the intracellular replication of S. Typhimurium is the need to regenerate ATP. The metabolic route used to fulfil this requirement is the subject of the present study. For infection models we used human and murine epithelial and macrophage cell lines. The epithelial cell lines were mICc12, a transimmortalised murine colon enterocyte cell line that shows many of the characteristics of a primary epithelial cell line, and HeLa cells. The model macrophage cell lines were THP-1A human monocyte/macrophages and RAW 264.7 murine macrophages. Using a mutational approach combined with an exometabolomic analysis, we showed that neither fermentative metabolism nor anaerobic respiration play major roles in energy generation in any of the cell lines studied. Rather, we identified overflow metabolism to acetate and lactate as the foremost route by which S. Typhimurium fulfils its energy requirements.  相似文献   

6.
7.
8.
The invasion of HeLa cells by beta-hemolytic Lancefield group G streptococci was studied by measuring the number of bacterial cells that survive exposure to gentamicin. Approximately 50% of bacteria introduced to the HeLa cell monolayer survived gentamicin treatment, suggesting that they were intracellular. Electron microscopy of these preparations showed intracellular bacteria in the cytoplasm, not surrounded by host cell membranes. Trypsinized bacteria incubated with HeLa cells were all killed by gentamicin. It appears that the beta-hemolytic group G streptococci have mechanisms for entry into human epithelial cells which may have importance in the virulence of the organisms.  相似文献   

9.
Methionine is a highly susceptible amino acid that can be oxidized to S and R diastereomeric forms of methionine sulfoxide by many of the reactive oxygen species generated in biological systems. Methionine sulfoxide reductases (Msrs) are thioredoxin-linked enzymes involved in the enzymatic conversion of methionine sulfoxide to methionine. Although MsrA and MsrB have the same function of methionine reduction, they differ in substrate specifi city, active site composition, subcellular localization, and evolution. MsrA has been localized in different ocular regions and is abundantly expressed in the retina and in retinal pigment epithelial (RPE) cells. MsrA protects cells from oxidative stress. Overexpression of MsrA increases resistance to cell death, while silencing or knocking down MsrA decreases cell survival; events that are mediated by mitochondria. MsrA participates in protein-protein interaction with several other cellular proteins. The interaction of MsrAwith α-crystallins is of utmost importance given the known functions of the latter in protein folding, neuroprotection, and cell survival. Oxidation of methionine residues in α-crystallins results in loss of chaperone function and possibly its antiapoptotic properties. Recent work from our laboratory has shown that MsrA is co-localized with αA and αB crystallins in the retinal samples of patients with age-related macular degen- eration. We have also found that chemically induced hypoxia regulates the expression of MsrA and MsrB2 in human RPE cells. Thus, MsrA is a critical enzyme that participates in cell and tissue protection, and its interaction with other proteins/growth factors may provide a target for therapeutic strategies to prevent degenerative diseases.  相似文献   

10.
Peptide methionine sulfoxide reductase (MsrA) repairs oxidative damage to methionine residues arising from reactive oxygen species and reactive nitrogen intermediates. MsrA activity is found in a wide variety of organisms, and it is implicated as one of the primary defenses against oxidative stress. Disruption of the gene encoding MsrA in several pathogenic bacteria responsible for infections in humans results in the loss of their ability to colonize host cells. Here, we present the X-ray crystal structure of MsrA from the pathogenic bacterium Mycobacterium tuberculosis refined to 1.5 A resolution. In contrast to the three catalytic cysteine residues found in previously characterized MsrA structures, M. tuberculosis MsrA represents a class containing only two functional cysteine residues. The structure reveals a methionine residue of one MsrA molecule bound at the active site of a neighboring molecule in the crystal lattice and thus serves as an excellent model for protein-bound methionine sulfoxide recognition and repair.  相似文献   

11.
Mycoplasma genitalium, a human pathogen associated with sexually transmitted diseases, is unique in that it has smallest genome of any known free-living organism. The goal of this study was to investigate if and how M. genitalium uses a minimal genome to generate genetic variations. We analysed the sequence variability of the third gene (MG192 or mgpC) of the M. genitalium MgPa adhesion operon, demonstrated that the MG192 gene is highly variable among and within M. genitalium strains in vitro and in vivo, and identified MG192 sequence shifts in the course of in vitro passage of the G37 type strain and in sequential specimens from an M. genitalium-infected patient. In order to establish the origin of the MG192 variants, we examined nine genomic loci containing partial copies of the MgPa operon, known as MgPar sequences. Our analysis suggests that the MG192 sequence variation is achieved by recombination between the MG192 expression site and MgPar sequences via gene cross-over and, possibly, also by gene conversion. It appears plausible that M. genitalium has the ability to generate unlimited variants from its minimized genome, which presumably allows the organism to adapt to diverse environments and/or to evade host defences by antigenic variation.  相似文献   

12.
Hölzer SU  Hensel M 《PloS one》2012,7(3):e33220
The molecular mechanisms of virulence of the gastrointestinal pathogen Salmonella enterica are commonly studied using cell culture models of infection. In this work, we performed a direct comparison of the interaction of S. enterica serovar Typhimurium (S. Typhimurium) with the non-polarized epithelial cell line HeLa, the polarized cell lines CaCo2, T84 and MDCK, and macrophage-like RAW264.7 cells. The ability of S. Typhimurium wild-type and previously characterized auxotrophic mutant strains to enter host cells, survive and proliferate within mammalian cells and deploy the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS) was quantified. We found that the entry of S. Typhimurium into polarized cells was much more efficient than entry into non-polarized cells or phagocytic uptake. While SPI2-T3SS dependent intracellular proliferation was observed in HeLa and RAW cells, the intracellular replication in polarized cells was highly restricted and not affected by defective SPI2-T3SS. The contribution of aromatic amino acid metabolism and purine biosynthesis to intracellular proliferation was distinct in the various cell lines investigated. These observations indicate that the virulence phenotypes of S. Typhimurium are significantly affected by the cell culture model applied.  相似文献   

13.
A role for ActA in epithelial cell invasion by Listeria monocytogenes   总被引:6,自引:1,他引:6  
We assessed the role of the actin-polymerizing protein, ActA, in host cell invasion by Listeria monocytogenes . An in frame Δ actA mutant was constructed in a hyperinvasive strain of prfA * genotype, in which all genes of the PrfA-dependent virulence regulon, including actA , are highly expressed in vitro . Loss of ActA production in prfA * bacteria reduced entry into Caco-2, HeLa, MDCK and Vero epithelial cells to basal levels. Reintroduction of actA into the Δ actA prfA * mutant fully restored invasiveness, demonstrating that ActA is involved in epithelial cell invasion. ActA did not contribute to internalization by COS-1 fibroblasts and Hepa 1-6 hepatocytes. Expression of actA in Listeria innocua was sufficient to promote entry of this non-invasive species into epithelial cell lines, but not into COS-1 and Hepa 1-6 cells, indicating that ActA directs an internalization pathway specific for epithelial cells. Scanning electron microscopy of infected Caco-2 human enterocytes suggested that this pathway involves microvilli. prfA * bacteria, but not wild-type bacteria (which express PrfA-dependent genes very weakly in vitro ) or prfA *Δ actA bacteria, efficiently invaded differentiated Caco-2 cells via their apical surface. Microvilli played an active role in the phagocytosis of the prfA * strain, and actA was required for their remodelling into pseudopods mediating bacterial uptake. Thus, ActA appears to be a multifunctional virulence factor involved in two important aspects of Listeria pathogenesis: actin-based motility and host cell tropism and invasion.  相似文献   

14.
Methionine sulfoxide reductase A (MsrA) is an antioxidant repair enzyme which reduces oxidized methionine to methionine. Since oxidation of methionine in proteins impairs their function, an absence of MsrA leads to abnormalities in different organisms, including alterations in the adherence patterns and in vivo survival of certain pathogenic bacteria. To understand the role of MsrA in intracellular survival of bacteria, we disrupted the gene encoding MsrA in Mycobacterium smegmatis through homologous recombination. The msrA mutant strain of M. smegmatis exhibited significantly reduced intracellular survival in murine J774A.1 macrophages compared to the survival of its wild-type counterpart. Furthermore, immunofluorescence and immunoblotting of phagosomes containing M. smegmatis strains revealed that the phagosomes with the msrA mutant strain acquired both p67(phox) of phagocyte NADPH oxidase and inducible nitric oxide synthase much earlier than the phagosomes with the wild-type strain. In addition, the msrA mutant strain of M. smegmatis was observed to be more sensitive to hydroperoxides than the wild-type strain was in vitro. These results suggest that MsrA plays an important role in both extracellular and intracellular survival of M. smegmatis.  相似文献   

15.
S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches.  相似文献   

16.
Enteropathogenic Escherichia coli (EPEC) causes diarrhoea in children in developing countries. Many EPEC genes involved in virulence are contained within the locus of enterocyte effacement (LEE), a large pathogenicity island. One of the genes at the far righthand end of the LEE encodes EspF, an EPEC secreted protein of unknown function. EspF, like the other Esps, is a substrate for secretion by the type III secretory system. Previous studies found that an espF mutant behaved as wild type in assays of adherence, invasion, actin condensation and tyrosine phosphorylation. As EPEC can kill host cells, we tested esp gene mutants for host cell killing ability. The espF mutant was deficient in host cell killing despite having normal adherence. The addition of purified EspF to tissue culture medium did not cause any damage to host cells, but expression of espF in COS or HeLa cells caused cell death. The mode of cell death in cells transfected with espF appeared to be pure apoptosis. EspF appears to be an effector of host cell death in epithelial cells; its proline-rich structure suggests that it may act by binding to SH3 domains or EVH1 domains of host cell signalling proteins.  相似文献   

17.
Shigella flexneri causes bacillary dysentery by invading epithelial cells of the colonic mucosa. We have characterized the icsB gene which is located on the virulence plasmid pWR100. After inactivation of icsB, the mutant strain remained invasive, but formed abnormally small plaques on HeLa cell monolayers, colonized only the peripheral cells of Caco-2 islets, and was unable to provoke a keratoconjunctivitis in guinea-pigs. Examination of infected HeLa cells showed that the icsB mutant was able to lyse the phagocytic vacuole and to form protrusions at the surface of infected cells, but, unlike the wild type, remained trapped in protrusions surrounded by two membranes. These results indicate that IcsB is involved in the lysis of the protrusions, a step necessary for intercellular spread.  相似文献   

18.
19.
A clonal variant of serotype M1 group A streptococcus (designated M1inv+) has been linked to severe and invasive infections, including sepsis, necrotizing fasciitis and toxic shock. High frequency internalization of cultured epithelial cells by the M1inv+ strain 90-226 is dependent upon the M1 protein. Invasion of HeLa cells was blocked by an anti-M1 antibody, invasion by an M1- strain (90-226 emm1::km) was greatly reduced, and latex beads bound to M1 protein were readily internalized by HeLa cells. Beads coated with a truncated M1 protein were internalized far less frequently. Scanning electron microscopy indicated that streptococci invade by a zipper-like mechanism, that may be mediated by interactions with host cell microvilli. Initially, internalized streptococci and streptococci undergoing endocytosis are associated with polymerized actin. Later in the internalization process, streptococcal-containing vacuoles are associated with the lysosomal membrane glycoprotein, LAMP-1.  相似文献   

20.
Abstract The majority of extant life forms thrive in an O(2)-rich environment, which unavoidably induces the production of reactive oxygen species (ROS) during cellular activities. ROS readily oxidize methionine (Met) residues in proteins/peptides to form methionine sulphoxide [Met(O)] that can lead to impaired protein function. Two methionine sulphoxide reductases, MsrA and MsrB, catalyse the reduction of the S and R epimers, respectively, of Met(O) in proteins to Met. The Msr system has two known functions in protecting cells against oxidative damage. The first is to repair proteins that have lost activity due to Met oxidation and the second is to function as part of a scavenger system to remove ROS through the reversible oxidation/reduction of Met residues in proteins. Bacterial, plant and animal cells lacking MsrA are known to be more sensitive to oxidative stress. The Msr system is considered an important cellular defence mechanism to protect against oxidative stress and may be involved in ageing/senescence. MsrA is present in all known eukaryotes and eubacteria and a majority of archaea, reflecting its essential role in cellular life. MsrB is found in all eukaryotes and the majority of eubacteria and archaea but is absent in some eubacteria and archaea, which may imply a less important role of MsrB compared to MsrA. MsrA and MsrB share no sequence or structure homology, and therefore probably emerged as a result of independent evolutionary events. The fact that some archaea lack msr genes raises the question of how these archaea cope with oxidative damage to proteins and consequently of the significance of msr evolution in oxic eukaryotes dealing with oxidative stress. Our best hypothesis is that the presence of ROS-destroying enzymes such as peroxiredoxins and a lower dissolved O(2) concentration in those msr-lacking organisms grown at high temperatures might account for the successful survival of these organisms under oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号