首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-throughput screening methods have been used to identify two novel series of inhibitors that disrupt progranulin binding to sortilin. Exploration of structure-activity relationships (SAR) resulted in compounds with sufficient potency and physicochemical properties to enable co-crystallization with sortilin. These co-crystal structures supported observed SAR trends and provided guidance for additional avenues for designing compounds with additional interactions within the binding site.  相似文献   

2.
A novel class of non-nucleoside HCV NS5B polymerase inhibitors has been identified from screening. A co-crystal structure revealed an allosteric binding site in the protein that required a unique conformational change to accommodate inhibitor binding. Herein we report the structure-activity relationships (SARs) of this novel class of dihydropyrone-containing compounds that show potent inhibitory activities against the HCV RNA polymerase in biochemical assays.  相似文献   

3.
VRAF murine sarcoma viral oncogene homologue B1 (BRAF) kinase has proved to be a promising target for the development of therapeutics for the treatment of a variety of human cancers. Here, we report the first example of a successful application of the structure-based virtual screening to identify novel BRAF inhibitors. These inhibitors have desirable physicochemical properties as a drug candidate, and compound 1 revealed a submicromolar binding affinity (0.7 μM). Therefore, they may serve as promising lead compounds for further development by structure-activity relationship (SAR) studies to optimize the inhibitory activities. Structural features relevant to the stabilization of the newly identified inhibitors in the ATP-binding site of BRAF are discussed in detail.  相似文献   

4.
None of the already described CK2 inhibitors did fulfill the requirements for successful clinical settings. In order to find innovative CK2 inhibitors based on new scaffolds, we have performed a high-throughput screening of diverse chemical libraries. We report here the identification and characterization of several classes of new inhibitors. Whereas some share characteristics of previously known CK2 inhibitors, others are chemically unrelated and may represent new opportunities for the development of better CK2 inhibitors. By combining structure-activity relationships with a docking procedure, we were able to determine the binding mode of these inhibitors. Interestingly, beside the identification of several nanomolar ATP-competitive inhibitors, one class of chemical inhibitors displays a non-ATP competitive mode of inhibition, a feature that suggests that CK2 possess distinct druggable binding sites. For the most promising inhibitors, selectivity profiling was performed. We also provide evidence that some chemical compounds are inhibiting CK2 in living cells. Finally, the collected data allowed us to draw the rules about the chemical requirements for CK2 inhibition both in vitro and in a cellular context.  相似文献   

5.
The X-ray structures of pancreatic bovine and porcine phospholipases A2 have been used along with interactive computer graphics to design conformationally rigid, novel compounds (1-meta-hydroxybenzyl-2-substituted acenaphthenes) directed at the active sites of these enzymes. In vitro testing confirmed that the designed compounds are potent inhibitors of the porcine pancreatic phospholipase A2 and exhibit both stereoselectivity and structure-activity relationships that are consistent with the proposed mode of binding. These compounds take advantage of a hydrophobic "slot" positioned between residues Leu-2 and Tyr-69 while positioning hydrogen-bonding functionality directed at the nd1-N of His-48. Experimental evidence shows a regioselective preference for this H-bond acceptor. A second part of the strategy used a tethered amine to displace the essential calcium providing a bisubstrate analog.  相似文献   

6.
血栓栓塞性疾病是引起人类疾病死亡的主要原因之一,随着人们对其发病机制研究与认识的不断深入以及药物设计和筛选技术的日臻成熟,针对各种靶点的新型抗血栓药物不断涌现,如二磷酸腺苷受体阻滞剂、Ⅹ a 因子抑制剂、凝血酶抑制剂等,我国药学研究者也在这些靶向抗血栓药物研究领域取得一定进展。综述我国学者近些年在国内外学术期刊上发表的相关研究论文中所涉及的各类新型抗血小板药物、抗凝血药物和血栓溶解剂的结构、活性和构效关系。  相似文献   

7.
VEGFR-2 and Src kinases both play important roles in cancers. In certain cancers, Src works synergistically with VEGFR-2 to promote its activation. Development of multi-target drugs against VEGFR-2 and Src is of therapeutic advantage against these cancers. By using molecular docking and SVM virtual screening methods and based on subsequent synthesis and bioassay studies, we identified 9-aminoacridine derivatives with an acridine scaffold as potentially interesting novel dual VEGFR-2 and Src inhibitors. The acridine scaffold has been historically used for deriving topoisomerase inhibitors, but has not been found in existing VEGFR-2 inhibitors and Src inhibitors. A series of 21 acridine derivatives were synthesized and evaluated for their antiproliferative activities against K562, HepG-2, and MCF-7 cells. Some of these compounds showed better activities against K562 cells in vitro than imatinib. The structure-activity relationships (SAR) of these compounds were analyzed. One of the compounds (7r) showed low μM activity against K562 and HepG-2 cancer cell-lines, and inhibited VEGFR-2 and Src at inhibition rates of 44% and 8% at 50μM, respectively, without inhibition of topoisomerase. Moreover, 10μM compound 7r could reduce the levels of activated ERK1/2 in a time dependant manner, a downstream effector of both VEGFR-2 and Src. Our study suggested that acridine scaffold is a potentially interesting scaffold for developing novel multi-target kinase inhibitors such as VEGFR-2 and Src dual inhibitors.  相似文献   

8.
This paper describes SAR directed design and synthesis of novel beta(1-4)-glucosyltransferase (BGT) inhibitors. The designed inhibitors 1-5 provide conformational mimicry of the transition-state in glucosyltransfer reactions. The compounds were tested for in vitro inhibitory activity against (BGT) and the inhibition kinetics were examined. Three of the designed molecules were found to be potential inhibitors of BGT having IC50 values in micromolar (microM) range. Useful structure-activity relationships were established, which provide guidelines for the design of future generations of inhibitors of BGT.  相似文献   

9.
A series of new phosphinate compounds were designed and synthesized as inhibitors of the d-glutamic acid-adding enzyme (MurD) involved in peptidoglycan biosynthesis. They were tested against the MurD enzyme from Escherichia coli, allowing initial structure-activity relationships to be deduced. Two compounds had IC(50) values near 100 microM and constitute a promising starting point for further development.  相似文献   

10.
This paper is an attempt to design 4-anilinoquinazoline compounds having promising anticancer activities against epidermal growth factor (EGFR) kinase inhibition, using virtual combinatorial library approach. Partial least squares method has been applied for the development of a quantitative structure–activity relationship (QSAR) model based on training and test set approaches. The partial least squares model showed some interesting results in terms of internal and external predictability against EGFR kinase inhibition for such type of anilinoquinazoline derivatives. In virtual screening study, out of 4860 compounds in chemical library, 158 compounds were screened and finally, 10 compounds were selected as promising EGFR kinase inhibitors based on their predicted activities from the QSAR model. These derivatives were subjected to molecular docking study to investigate the mode of binding with the EGFR kinase, and the two compounds (ID 3639 and 3399) showing similar type of docking score and binding patterns with that of the existing drug molecules like erlotinib were finally reported.  相似文献   

11.
Noroviruses (NoVs) are the most important viral pathogens that cause epidemic acute gastroenteritis. NoVs recognize human histo-blood group antigens (HBGAs) as receptors or attachment factors. The elucidation of crystal structures of the HBGA-binding interfaces of a number of human NoVs representing different HBGA binding patterns opens a new strategy for the development of antiviral compounds against NoVs through rational drug design and computer-aided virtual screening methods. In this study, docking simulations and virtual screening were used to identify hit compounds targeting the A and B antigens binding sites on the surface of the capsid P protein of a GII.4 NoV (VA387). Following validation by re-docking of the A and B ligands, these structural models and AutoDock suite of programs were used to screen a large drug-like compound library (derived from ZINC library) for inhibitors blocking GII.4 binding to HBGAs. After screening >2 million compounds using multistage protocol, 160 hit compounds with best predicted binding affinities and representing a number of distinct chemical classes have been selected for subsequent experimental validation. Twenty of the 160 compounds were found to be able to block the VA387 P dimers binding to the A and/or B HBGAs at an IC50<40.0 µM, with top 5 compounds blocking the HBGA binding at an IC50<10.0 µM in both oligosaccharide- and saliva-based blocking assays. Interestingly, 4 of the top-5 compounds shared the basic structure of cyclopenta [a] dimethyl phenanthren, indicating a promising structural template for further improvement by rational design.  相似文献   

12.
This report details the structure-activity relationships of the HIV gag substrate analog Val-Ser-Gln-Asn-Leu psi[CH(OH)CH2]Val-Ile-Val (U-85548E), an inhibitor exhibiting subnanomolar affinity towards HIV type-1 aspartic proteinase (HIV-1 PR). Our data show that the P1-P2' tripeptidyl sequence provides the minimal chemical determinant for HIV-1 PR binding. We describe the structure-activity properties of Leu psi[CH(OH)CH2]Val substitution in other peptidyl ligands of nonviral substrate origin (e.g., angiotensinogen, insulin and pepstatin). Furthermore, the aspartic proteinase selectivities of a few key compounds are summarized relative to evaluation against human renin, human pepsin, and the fungal enzyme, rhizopuspepsin. These studies have led to the rational design of nanomolar potent inhibitors of both HIV-1 and HIV-2 PR. Finally, a 2.5 A resolution X-ray crystallographic structure of U-85548E complexed to synthetic HIV-1 PR dimer (Jaskolski et al., Biochemistry 30, 1600 [1991]) provided a 3-D picture of the inhibitor bound to the enzyme active site, and we performed computer-assisted molecular modeling studies to explore the possible binding modes of the above series of Leu psi[CH(OH)CH2]Val substituted HIV-1 PR inhibitors.  相似文献   

13.
Cytochrome P450 2C9 (2C9) is one of the three major drug metabolizing cytochrome P450 enzymes in human liver. Although the crystal structure of 2C9 has been solved, the important physicochemical properties of substrate-enzyme interactions remain difficult to be determined. This is due in part to the conformational flexibility of mammalian P450 enzymes. Therefore, probing the active-site with high-affinity substrates is important in further understanding substrate-enzyme interactions. Three-dimensional quantitative structure-activity relationships (3D-QSAR) and docking experiments have been shown to be useful tools in correlating biological activity with structure. In particular we have previously reported that the very tight-binding inhibitor benzbromarone can provide important information about the active-site of 2C9. In this study we report the binding affinities and potential substrate-enzyme interactions of 4H-chromen-4-one analogs, which are structurally similar to benzbromarone. The chromenone structures are synthetically accessible inhibitors and give inhibition constants as low as 4.2 nM, comparable with the very tightest-binding inhibitors of 2C9. Adding these compounds to our previous 2C9 libraries for CoMFA models reinforces the important electrostatic and hydrophobic features of substrate binding. These compounds have also been docked in the 2C9 crystal structure and the results indicate that Arg 108 plays significant roles in the binding of chromenone substrates.  相似文献   

14.
A novel class of reversible inhibitors of Interleukin-1beta-converting enzyme (ICE, caspase-1) were discovered by iterative structure-based design. Guided by the X-ray crystal structure of analogues 1, 7 and 10 bound to ICE, we have designed a nonpeptide series of small molecule inhibitors. These compounds incorporate an arylsulfonamide moiety which replaces Val-His unit (P3-P2 residues) amino acids of the native substrate. The synthesis of the core structure, structure-activity relationships (SARs), and proposed binding orientation based on molecular modeling studies for this series of ICE inhibitors are described.  相似文献   

15.
A series of fused pyrimidine based inhibitors of PDE7 have been derived from an earlier screening lead 1. The synthesis, structure-activity relationships (SAR) and selectivity against several other PDE family members are described.  相似文献   

16.
EGFR is a target protein for the treatment of non small cell lung cancer (NSCLC). The mutations associated with the activation of EGFR kinase activity, such as L858R and G719S, destabilize the inactive conformation of EGFR and are closely linked with the development of NSCLC. The additional T790M mutation reportedly causes drug resistance against the commercially available EGFR inhibitors, gefitinib and erlotinib. In this study, we searched for novel G719S/T790M EGFR inhibitors by a new in silico screening strategy, using two datasets. The results of in silico screening using protein-ligand docking are affected by the selection of 3D structure of the target protein. As the first strategy, we chose the 3D structures for in silico screening by test dockings using the G719S/T790M crystal structure, its molecular dynamics snapshots, and known inhibitors of the drug-resistant EGFR. In the second strategy, we selected the 3D structures by test dockings using all of the EGFR structures, regardless of the mutations, and all of the known EGFR inhibitors. Using each of the 3D structures selected by the strategies, 1000 compounds were chosen from the 71,588 compounds. Kinase assays identified 15 G719S/T790M EGFR inhibitors, including two compounds with novel scaffolds. Analyses of their structure-activity relationships revealed that interactions with the mutated Met790 residue specifically increase the inhibitory activity against G719S/T790M EGFR.  相似文献   

17.
IKK2 (IκB kinase 2) inhibitors have been identified as potential drug candidates in the treatment of various immune/inflammatory disorders as well as cancer. So far more than one hundred small molecule inhibitors against IKK2 have been reported publicly. In this investigation, pharmacophore modeling was carried out to clarify the essential structure-activity relationship for the known IKK2 inhibitors. One of the established pharmacophore hypotheses, namely Hypo8, which has the best prediction ability to an external test data set, was suggested as a template for virtual screening. Evaluation of the performances of Hypo8 and a hybrid method (Hypo81docking) in virtual screening indicated that the use of the hybrid virtual screening considerably increased the hit rate and enrichment factor. The hybrid method was therefore adopted for screening several commercially available chemical databases, including Specs, NCI, Maybridge and Chinese Nature Product Database (CNPD), for novel potent IKK2 inhibitors. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five. Finally some of the final hit compounds were selected and suggested for further experimental investigations.  相似文献   

18.
Two series of N-hydroxyformamide inhibitors of ADAM-TS4 were identified from screening compounds previously synthesised as inhibitors of matrix metalloproteinase-13 (collagenase-3). Understanding of the binding mode of this class of compound using ADAM-TS1 as a structural surrogate has led to the discovery of potent and very selective inhibitors with favourable DMPK properties. Synthesis, structure-activity relationships, and strategies to improve selectivity and lower in vivo metabolic clearance are described.  相似文献   

19.
20.
Malaria is a parasitic disease that remains a global health burden. The ability of the parasite to rapidly develop resistance to therapeutics drives an urgent need for the delivery of new drugs. The Medicines for Malaria Venture have compounds known for their antimalarial activity, but not necessarily the molecular targets. In this study, we assess the ability of the “MMV 400” compounds to inhibit the activity of three metalloaminopeptidases from Plasmodium falciparum, PfA-M1, PfA-M17 and PfM18 AAP. We have developed a multiplex assay system to allow rapid primary screening of compounds against all three metalloaminopeptidases, followed by detailed analysis of promising compounds. Our results show that there were no PfM18AAP inhibitors, whereas two moderate inhibitors of the neutral aminopeptidases PfA-M1 and PfA-M17 were identified. Further investigation through structure-activity relationship studies and molecular docking suggest that these compounds are competitive inhibitors with novel binding mechanisms, acting through either non-classical zinc coordination or independently of zinc binding altogether. Although it is unlikely that inhibition of PfA-M1 and/or PfA-M17 is the primary mechanism responsible for the antiplasmodial activity reported for these compounds, their detailed characterization, as presented in this work, pave the way for their further optimization as a novel class of dual PfA-M1/PfA-M17 inhibitors utilising non-classical zinc binding groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号