首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The low density lipoprotein receptor-related protein-5 (LRP5), a co-receptor in the Wnt signaling pathway, modulates bone mass in humans and in mice. Lrp5 knock-out mice have severely impaired responsiveness to mechanical stimulation whereas Lrp5 gain-of-function knock-in and transgenic mice have enhanced responsiveness to mechanical stimulation. Those observations highlight the importance of Lrp5 protein in bone cell mechanotransduction. It is unclear if and how high bone mass-causing (HBM) point mutations in Lrp5 alter the bone-wasting effects of mechanical disuse. To address this issue we explored the skeletal effects of mechanical disuse using two models, tail suspension and Botulinum toxin-induced muscle paralysis, in two different Lrp5 HBM knock-in mouse models. A separate experiment employing estrogen withdrawal-induced bone loss by ovariectomy was also conducted as a control. Both disuse stimuli induced significant bone loss in WT mice, but Lrp5 A214V and G171V were partially or fully protected from the bone loss that normally results from disuse. Trabecular bone parameters among HBM mice were significantly affected by disuse in both models, but these data are consistent with DEXA data showing a failure to continue growing in HBM mice, rather than a loss of pre-existing bone. Ovariectomy in Lrp5 HBM mice resulted in similar protection from catabolism as was observed for the disuse experiments. In conclusion, the Lrp5 HBM alleles offer significant protection from the resorptive effects of disuse and from estrogen withdrawal, and consequently, present a potential mechanism to mimic with pharmaceutical intervention to protect against various bone-wasting stimuli.  相似文献   

2.
Sedentary life style may degrade bone mass and microstructure resulting in osteoporosis. We characterized trabecular bone structural properties to determine if the LRP5 G171V mutation will protect against disuse-related bone loss. Forty-eight adult male mice representing three genotypes (WT = wild type, KO = LRP5-knockout +/−, HBM = High bone with the LRP5 G171V mutation) were each randomly divided between control and disuse (4 week hindlimb suspension) groups. Trabecular bone volume fraction (BV/TV) declined in all the three genotypes. Trabecular thickness was lower in the HBM and LRP5 (+/−) KO disuse groups when compared to their respective controls. While the remaining measures of bone structure (Trabecular number, connectivity density, apparent and tissue density) were lower, the trabecular separation increased in the LRP5 (+/−) with disuse. Although the absolute loss in BV/TV was similar, the relative loss due to disuse was far greater in the LRP5 (+/−) mice (67%) than in the HBM mice (14%). The disuse caused 20% decrease in trabecular number and thickness for LRP5 (+/−), while the decline was between 6 and 11% for the HBM and WT mice.  相似文献   

3.
A single point mutation (G to T) in the low-density lipoprotein receptor related protein 5 (LRP5) gene results in a glycine to valine amino acid change (G171V) and is responsible for an autosomal dominant high bone mass trait (HBM) in two independent kindreds. LRP5 acts as a co-receptor to Wnts with Frizzled family members and transduces Wnt-canonical signals which can be antagonized by LRP5 ligand, Dickkopf 1 (Dkk1). In the presence of Wnt1, LRP5 or the HBM variant (LRP5-G171V) induces beta-catenin nuclear translocation and activates T cell factor (TCF)-luciferase reporter activity. HBM variant suppresses Dkk1 function and this results in reduced inhibition of TCF activity as compared to that with LRP5. Structural analysis of LRP5 revealed that the HBM mutation lies in the 4th blade of the first beta-propeller domain. To elucidate the functional significance and consequence of the LRP5-G171V mutation in vitro, we took a structure-based approach to design 15 specific LRP5 point mutations. These included (a) substitutions at the G171 in blade 4, (b) mutations in blades 2-6 of beta-propeller 1, and (c) mutations in beta-propellers 2, 3 and 4. Here we show that substitutions of glycine at 171 to K, F, I and Q also resulted in HBM-like activity in the presence of Wnt1 and Dkk1. This indicates the importance of the G171 site rather than the effect of specific amino acid modification to LRP5 receptor function. Interestingly, G171 equivalent residue mutations in other blades of beta-propeller 1 (A65V, S127V, L200V, A214V and M282V) resulted in LRP5-G171V-like block of Dkk1 function. However G171V type mutations in other beta-propellers of LRP5 did not result in resistance to Dkk1 function. These results indicate the importance of LRP5 beta-propeller 1 for Dkk1 function and Wnt signaling. These data and additional comparative structural analysis of the LRP5 family member LDLR suggest a potential functional role of the first beta-propeller domain through intramolecular interaction with other domains of LRP5 wherein Dkk1 can bind. Such studies may also lead to a better understanding of the mechanisms underlying the reduced function of Dkk1-like inhibitory ligands of LRP5 with HBM-like mutations and its relationship to increased bone density phenotypes.  相似文献   

4.
The cell surface receptor, low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass. Loss-of-function mutations in LRP5 cause the human skeletal disease osteoporosis-pseudoglioma syndrome, an autosomal recessive disorder characterized by severely reduced bone mass and strength. We investigated the role of LRP5 on bone strength using mice engineered with a loss-of-function mutation in the gene. We then tested whether the osteogenic response to mechanical loading was affected by the loss of Lrp5 signaling. Lrp5-null (Lrp5-/-) mice exhibited significantly lower bone mineral density and decreased strength. The osteogenic response to mechanical loading of the ulna was reduced by 88 to 99% in Lrp5-/- mice, yet osteoblast recruitment and/or activation at mechanically strained surfaces was normal. Subsequent experiments demonstrated an inability of Lrp5-/- osteoblasts to synthesize the bone matrix protein osteopontin after a mechanical stimulus. We then tested whether Lrp5-/- mice increased bone formation in response to intermittent parathyroid hormone (PTH), a known anabolic treatment. A 4-week course of intermittent PTH (40 microg/kg/day; 5 days/week) enhanced skeletal mass equally in Lrp5-/- and Lrp5+/+ mice, suggesting that the anabolic effects of PTH do not require Lrp5 signaling. We conclude that Lrp5 is critical for mechanotransduction in osteoblasts. Lrp5 is a mediator of mature osteoblast function following loading. Our data suggest an important component of the skeletal fragility phenotype in individuals affected with osteoporosis-pseudoglioma is inadequate processing of signals derived from mechanical stimulation and that PTH might be an effective treatment for improving bone mass in these patients.  相似文献   

5.
6.
Mechanism underlying smoke-induced loss of bone mass is unknown. In this study, we hypothesized that protein signals induced by smoking in bone marrow may be associated with the loss of bone mass. Using a proteomics approach, we identified 38 proteins differentially expressed in bone marrow cells from low-density lipoprotein receptor-related protein 5 (Lrp5) mice exposed to cigarette smoking. Smoking effects on protein expression in bone marrow among three genotypes (Lrp5(+/+), Lrp5(G171V), and Lrp5(-/-)) varied. On the basis of the ratio of protein expression induced by smoking versus nonsmoking, smoke induced protein expression significantly in wild-type mice compared to the other two genotypes (Lrp5(G171V) and Lrp5(-/-)). These proteins include inhibitors of β-catenin and proteins associated with differentiation of osteoclasts. We observed that S100A8 and S100A9 were overexpressed in human smokers compared to nonsmokers, which confirmed the effect of smoking on the expression of two proteins in Lrp5 mice, suggesting the role of these proteins in bone remodeling. Smoke induced expression of S100A8 and S100A9 in a time-dependent fashion, which was opposite of the changes in the ratio of OPG/RANKL in bone marrow cells, suggesting that the high levels of S100A8 and S100A9 may be associated with smoke-induced bone loss by increasing bone resorption.  相似文献   

7.
The mechanism by which the high-bone-mass (HBM) mutation (G171V) of the Wnt coreceptor LRP5 regulates canonical Wnt signaling was investigated. The mutation was previously shown to reduce DKK1-mediated antagonism, suggesting that the first YWTD repeat domain where G171 is located may be responsible for DKK-mediated antagonism. However, we found that the third YWTD repeat, but not the first repeat domain, is required for DKK1-mediated antagonism. Instead, we found that the G171V mutation disrupted the interaction of LRP5 with Mesd, a chaperone protein for LRP5/6 that is required for transport of the coreceptors to cell surfaces, resulting in fewer LRP5 molecules on the cell surface. Although the reduction in the number of cell surface LRP5 molecules led to a reduction in Wnt signaling in a paracrine paradigm, the mutation did not appear to affect the activity of coexpressed Wnt in an autocrine paradigm. Together with the observation that osteoblast cells produce autocrine canonical Wnt, Wnt7b, and that osteocytes produce paracrine DKK1, we think that the G171V mutation may cause an increase in Wnt activity in osteoblasts by reducing the number of targets for paracrine DKK1 to antagonize without affecting the activity of autocrine Wnt.  相似文献   

8.
A mutation in LRP5 (low-density lipoprotein receptor-related protein 5) has been shown to increase bone mass and density in humans and animals. Transgenic mice expressing the LRP5 mutation (G171V) demonstrate an increase in bone mass as compared to non-transgenic (NTG) littermates. This study evaluated LRP5 gene and gender-related influences on the structural and biomechanical strength properties of trabecular and cortical bone in femurs and vertebrae (L5) of 17-week-old mice. Micro-computed tomography was used to evaluate the trabecular bone structure of distal femurs and vertebrae ex vivo. Mechanical testing of the trabecular bone in the distal femur was done to determine biomechanical strength. Differences due to genotype and gender were tested using two-way ANOVA at a significance level of p<0.05. Trabecular bone structural parameters (BV/TV, trabecular thickness, number, etc.) at the distal femur, femoral neck, and vertebral body sites were greater in the transgenic as compared to the NTG mice. In addition, vertebral cortical thickness and trabecular strength parameters (ultimate and yield loads, stiffness, ultimate and yield stresses) in the distal femur were greater in the transgenic mice as compared to NTG. The increasing trends of cortical thickness were also noted in the transgenic mice as compared to NTG. Within LRP5 (G171V) mutant mice, there were significant gender-related differences in some of the trabecular bone structural parameters at all the sites (distal femur, femoral neck, and vertebral body). However, unlike trabecular structural parameters, the gender-specific differences were not found in the trabecular strength of LRP5 transgenic mice. In summary, these findings suggest that the LRP5 (G171V) mutation results in greater trabecular bone structure and strength at both the distal femurs and vertebral bodies as compared to NTG. In addition, only the trabecular structure parameters were affected by gender within the LRP5 (G171V) mutation.  相似文献   

9.
10.
11.
In the present study, we investigated whether nitric oxide (NO) could be involved in the effects of arg-vasopressin (AVP) on osteoblast-like cells. Cells derived from endothelial nitric oxide synthase (eNOS)-knockout mice and their wild type (WT) counterparts, and an osteosarcoma cell line (SaOS-2) were used. AVP (10-100 pmol/l) increased proliferation of osteoblast-like cells from WT mice. The effect was abolished by an AVP V1-receptor antagonist. AVP increased proliferation of cells from eNOSKO mice only when a NO donor, SNAP, was added. A nitric oxide synthase-inhibitor, L-NAME, antagonized the increase in cell proliferation in response to AVP in SaOS-2 cells. In conclusion, this study indicates that NO is involved in the effects of AVP on cell proliferation in osteoblast-like cells.  相似文献   

12.
Lrp5 functions in bone to regulate bone mass   总被引:1,自引:0,他引:1  
The human skeleton is affected by mutations in low-density lipoprotein receptor-related protein 5 (LRP5). To understand how LRP5 influences bone properties, we generated mice with osteocyte-specific expression of inducible Lrp5 mutations that cause high and low bone mass phenotypes in humans. We found that bone properties in these mice were comparable to bone properties in mice with inherited mutations. We also induced an Lrp5 mutation in cells that form the appendicular skeleton but not in cells that form the axial skeleton; we observed that bone properties were altered in the limb but not in the spine. These data indicate that Lrp5 signaling functions locally, and they suggest that increasing LRP5 signaling in mature bone cells may be a strategy for treating human disorders associated with low bone mass, such as osteoporosis.  相似文献   

13.
Low-density lipoprotein receptor-related proteins 5 and 6 (Lrp5 and Lrp6) are co-receptors of Wnt ligands and play important roles in Wnt/β-catenin signal transduction. Mice homozygous for a germline deletion of Lrp6 die at birth with several associated defects, while Lrp5-deficient mice are viable. Here, we conditionally deleted Lrp5 and/or Lrp6 in the mouse gut ((gut-/-)) by crossing mice carrying floxed alleles of Lrp5 and Lrp6 to a strain expressing Cre recombinase from the villin promoter (villin-Cre). The changes in morphology, differentiation, and Wnt signal transduction were validated using immunohistochemistry and other staining. Consistent with observations in mice carrying a homozygous germline deletion in Lrp5, intestinal development in Lrp5(gut-/-) mice was normal. In addition, mice homozygous for villin-Cre-induced deletion of Lrp6 (Lrp6(gut-/-)) were viable with apparently normal intestinal differentiation and function. However, mice homozygous for villin-Cre inactivated alleles of both genes (Lrp5(gut-/-) ; Lrp6(gut-/-)) died within 1 day of birth. Analysis of embryonic Lrp5(gut-/-); Lrp6(gut-/-) intestinal epithelium showed a progressive loss of cells, an absence of proliferation, and a premature differentiation of crypt stem/precursor cells; no notable change in differentiation was observed in the embryos lacking either gene alone. Further immunohistochemical studies showed that expression of the Wnt/β-catenin target, cyclin D1, was specifically reduced in the intestinal epithelium of Lrp5(gut-/-); Lrp6(gut-/-) embryos. Our data demonstrate that Lrp5 and Lrp6 play redundant roles in intestinal epithelium development, and that Lrp5/6 might regulate intestinal stem/precursor cell maintenance by regulating Wnt/β-catenin signaling.  相似文献   

14.
15.
Anthrax toxin (AnTx) plays a key role in the pathogenesis of anthrax. AnTx is composed of three proteins: protective antigen (PA), edema factor, and lethal factor (LF). PA is not toxic but serves to bind cells and translocate the toxic edema factor or LF moieties to the cytosol. Recently, the low-density lipoprotein receptor-related protein LRP6 has been reported to mediate internalization and lethality of AnTx. Based on its similarity to LRP6, we hypothesized that LRP5 may also play a role in cellular uptake of AnTx. We assayed PA-dependent uptake of anthrax LF or a cytotoxic LF fusion protein (FP59) in cells and mice harboring targeted deletions of Lrp5 or Lrp6. Unexpectedly, we observed that uptake was unaltered in the presence or absence of either Lrp5 or Lrp6 expression. Moreover, we observed efficient PA-mediated uptake into anthrax toxin receptor (ANTXR)-deficient Chinese hamster ovary cells (PR230) that had been stably engineered to express either human ANTXR1 or human ANTXR2 in the presence or absence of siRNA specific for LRP5 or LRP6. Our results demonstrate that neither LRP5 nor LRP6 is necessary for PA-mediated internalization or lethality of anthrax lethal toxin.  相似文献   

16.
The LDL receptor-related protein 1 (LRP1) partakes in metabolic and signaling events regulated in a tissue-specific manner. The function of LRP1 in airways has not been studied. We aimed to study the function of LRP1 in smoke-induced disease. We found that bronchial epithelium of patients with chronic obstructive pulmonary disease and airway epithelium of mice exposed to smoke had increased LRP1 expression. We then knocked out LRP1 in human bronchial epithelial cells in vitro and in airway epithelial club cells in mice. In vitro, LRP1 knockdown decreased cell migration and increased transforming growth factor β activation. Tamoxifen-inducible airway-specific LRP1 knockout mice (club Lrp1?/?) induced after complete lung development had increased inflammation in the bronchoalveolar space and lung parenchyma at baseline. After 6 months of smoke exposure, club Lrp1?/? mice showed a combined restrictive and obstructive phenotype, with lower compliance, inspiratory capacity, and forced expiratory volume0.05/forced vital capacity than WT smoke-exposed mice. This was associated with increased values of Ashcroft fibrotic index. Proteomic analysis of room air exposed-club Lrp1?/? mice showed significantly decreased levels of proteins involved in cytoskeleton signaling and xenobiotic detoxification as well as decreased levels of glutathione. The proteome fingerprint created by smoke eclipsed many of the original differences, but club Lrp1?/? mice continued to have decreased lung glutathione levels and increased protein oxidative damage and airway cell proliferation. Therefore, LRP1 deficiency leads to greater lung inflammation and damage and exacerbates smoke-induced lung disease.  相似文献   

17.
Low-density lipoprotein receptor-related protein 5 (LRP5) is a member of the LDLR family that orchestrates cholesterol homoeostasis. The role of LRP5 and the canonical Wnt pathway in the vascular wall of dyslipidaemic animals remains unknown. In this study, we analysed the role of LRP5 and the Wnt signalling pathway in mice fed a hypercholesterolaemic diet (HC) to trigger dyslipidaemia. We show that Lrp5−/− mice had larger aortic lipid infiltrations than wild-type mice, indicating a protective role for LRP5 in the vascular wall. Three members of the LDLR family, Lrp1, Vldlr and Lrp6, showed up-regulated gene expression levels in aortas of Lrp5−/− mice fed a hypercholesterolaemic diet. HC feeding in Lrp5−/− mice induced higher macrophage infiltration in the aortas and accumulation of inflammatory cytokines in blood. Wnt/β-CATENIN signalling proteins were down-regulated in HC Lrp5−/− mice indicating that LRP5 regulates the activation of Wnt signalling in the vascular wall. In conclusion, our findings show that LRP5 and the canonical Wnt pathway down-regulation regulate the dyslipidaemic profile by promoting lipid and macrophage retention in the vessel wall and increasing leucocyte-driven systemic inflammation.  相似文献   

18.
The gap junction protein, connexin43 (Cx43) is involved in mechanotransduction in bone. Recent studies using in vivo models of conditional Cx43 gene (Gja1) deletion in the osteogenic linage have generated inconsistent results, with Gja1 ablation resulting in either attenuated or enhanced response to mechanical load, depending upon the skeletal site examined or the type of load applied. To gain further insights on Cx43 and mechanotransduction, we examined bone formation response at both endocortical and periosteal surfaces in 2-month-old mice with conditional Gja1 ablation driven by the Dermo1 promoter (cKO). Relative to wild type (WT) littermates, it requires a larger amount of compressive force to generate the same periosteal strain in cKO mice. Importantly, cKO mice activate periosteal bone formation at a lower strain level than do WT mice, suggesting an increased sensitivity to mechanical load in Cx43 deficiency. Consistently, trabecular bone mass also increases in mutant mice upon load, while it decreases in WT. On the other hand, bone formation actually decreases on the endocortical surface in WT mice upon application of axial mechanical load, and this response is also accentuated in cKO mice. These changes are associated with increase of Cox-2 in both genotypes and further decrease of Sost mRNA in cKO relative to WT bones. Thus, the response of bone forming cells to mechanical load differs between trabecular and cortical components, and remarkably between endocortical and periosteal envelopes. Cx43 deficiency enhances both the periosteal and endocortical response to mechanical load applied as axial compression in growing mice.  相似文献   

19.
Although macrophages play a central role in the pathogenesis of septic shock, NK1(+) cells have also been implicated. NK1(+) cells comprise two major populations, namely NK cells and V alpha 14(+)NKT cells. To assess the relative contributions of these NK1(+) cells to LPS-induced shock, we compared the susceptibility to LPS-induced shock of beta(2)-microglobulin (beta(2)m)(-/-) mice that are devoid of V alpha 14(+)NKT cells, but not NK cells, with that of wild-type (WT) mice. The results show that beta(2)m(-/-) mice were more susceptible to LPS-induced shock than WT mice. Serum levels of IFN-gamma following LPS challenge were significantly higher in beta(2)m(-/-) mice, and endogenous IFN-gamma neutralization or in vivo depletion of NK1(+) cells rescued beta(2)m(-/-) mice from lethal effects of LPS. Intracellular cytokine staining revealed that NK cells were major IFN-gamma producers. The J alpha 281(-/-) mice that are exclusively devoid of V alpha 14(+)NKT cells were slightly more susceptible to LPS-induced shock than heterozygous littermates. Hence, LPS-induced shock can be induced in the absence of V alpha 14(+)NKT cells and IFN-gamma from NK cells is involved in this mechanism. In WT mice, hierarchic contribution of different cell populations appears likely.  相似文献   

20.
Body fat, insulin resistance, and type 2 diabetes are often linked together, but the molecular mechanisms that unify their association are poorly understood. Wnt signaling regulates adipogenesis, and its altered activity has been implicated in the pathogenesis of type 2 diabetes and metabolic syndrome. LRP6(+/-) mice on a high fat diet were protected against diet-induced obesity and hepatic and adipose tissue insulin resistance compared with their wild-type (WT) littermates. Brown adipose tissue insulin sensitivity and reduced adiposity of LRP6(+/-) mice were accounted for by diminished Wnt-dependent mTORC1 activity and enhanced expression of brown adipose tissue PGC1-α and UCP1. LRP6(+/-) mice also exhibited reduced endogenous hepatic glucose output, which was due to diminished FoxO1-dependent expression of the key gluconeogenic enzyme glucose-6-phosphatase (G6pase). In addition, in vivo and in vitro studies showed that loss of LRP6 allele is associated with increased leptin receptor expression, which is a likely cause of hepatic insulin sensitivity in LRP6(+/-) mice. Our study identifies LRP6 as a nutrient-sensitive regulator of body weight and glucose metabolism and as a potential target for pharmacological interventions in obesity and diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号