首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the behavior of tetracycline degradation and its degradation products upon treatment of isolated yeast that we termed “XPY-10.” XPY-10 was isolated from wastewater and identified as Trichosporon mycotoxinivorans by morphological and physiological tests and 5.8S rRNA ITS sequencing. In our experiments, 78.28 ± 0.8% of tetracycline was removed within 7 days with XPY-10. The degradation of tetracycline fitted well with the first-order kinetic model. We also speculated upon the biodegradation products formed during biodegradation. The possible structures of five products were determined using liquid chromatography–tandem mass spectrometry. During practical application, XPY-10 was shown to have an obvious influence on biodegradation, and 89.61% of tetracycline was removed in feedlot sewage after 7 days of reaction. The chemical oxygen demand removal reached 73.47%.  相似文献   

2.
Zearalenone (ZON) is a potent estrogenic mycotoxin produced by several Fusarium species most frequently on maize and therefore can be found in food and animal feed. Since animal production performance is negatively affected by the presence of ZON, its detoxification in contaminated plant material or by-products of bioethanol production would be advantageous. Microbial biotransformation into nontoxic metabolites is one promising approach. In this study the main transformation product of ZON formed by the yeast Trichosporon mycotoxinivorans was identified and characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and LC-diode array detector (DAD) analysis. The metabolite, named ZOM-1, was purified, and its molecular formula, C18H24O7, was established by time of flight MS (TOF MS) from the ions observed at m/z 351.1445 [M-H] and at m/z 375.1416 [M+Na]+. Employing nuclear magnetic resonance (NMR) spectroscopy, the novel ZON metabolite was finally identified as (5S)-5-({2,4-dihydroxy-6-[(1E)-5-hydroxypent-1-en-1-yl]benzoyl}oxy)hexanoic acid. The structure of ZOM-1 is characterized by an opening of the macrocyclic ring of ZON at the ketone group at C6′. ZOM-1 did not show estrogenic activity in a sensitive yeast bioassay, even at a concentration 1,000-fold higher than that of ZON and did not interact with the human estrogen receptor in an in vitro competitive binding assay.Zearalenone (ZON) is the main member of a growing family of biologically important “resorcylic acid lactones” (RALs), which have been found in nature. ZON is produced by several Fusarium species, which colonize maize, barley, oat, wheat, and sorghum and tend to develop ZON during prolonged cool, wet growing and harvest seasons (38). Maize is the most frequently contaminated crop plant, and therefore, ZON can be found frequently in animal feeding stuff. Occurrence, toxicity, and metabolism data of ZON were summarized by the European Food Safety Authority (EFSA) (5) and in recent reviews (12, 38).The potent xenohormone ZON leads to hyperestrogenism symptoms and in extreme cases to infertility problems, especially in pigs (15). Ovarian changes in pigs have been noted with toxin levels as low as of 50 μg/kg in the diet (1). Ruminants are more tolerant to ZON ingestion; however, hyperestrogenic syndrome, including restlessness, diarrhea, infertility, decreased milk yields, and abortion, have been well documented with cattle and sheep (4, 29).Because widespread ZON contamination in feed can occur in problematic years, efficient ways to detoxify are desirable. The transformation of mycotoxins to nontoxic metabolites by pure cultures of microorganisms or by cell-free enzyme preparations (3) is an attractive possibility. Microbial metabolization of ZON to alpha-ZOL and beta-ZOL cannot be regarded as detoxification, because both ZOL products are still estrogenic (14). Also, formation of ZON-glucosides and -diglucosides (8, 17) and ZON-sulfate (7) cannot be considered true detoxification but rather formation of masked mycotoxins, because the conjugates may be hydrolyzed during digestion (11, 23), releasing ZON again (2).As the estrogenic activity of ZON and its derivates can be explained by its chemical structure, which resembles natural estrogens (20), it can be expected that cleavage of the lactone undecyl ring system of ZON results in permanent detoxification.El-Sharkawy and Abul-Hajj (9) were the first to report inactivation of ZON after opening of the lactone ring by Gliocladium roseum. This filamentous fungus was capable of metabolizing ZON in yields of 80 to 90%. Also Takahashi-Ando et al. (31) described the degradation reaction of ZON with Clonostachys rosea (synonym of G. roseum). A hydrolase (encoded by a gene designated ZHD101) cleaves the lactone ring, and as recently proved (37; unpublished data) by subsequent decarboxylation of the intermediate acid, the compound 1-(3,5-dihydroxyphenyl)-10′-hydroxy-1′E-undecene-6′-one is formed. In contrast to ZON and 17β-estradiol, which showed potent estrogenic activity, this cleavage product did not show any estrogenic activity in the human breast cancer MCF-7 cell proliferation assay (16). Further details, e.g., on the conditions of the maximum activity of ZHD101 and its exploitation in genetically modified grains, can be found in later published work of this research group (32, 33).Only a few authors reported the loss of estrogenicity in microbial metabolites of ZON, which are based on reactions other than cleavage of the lactone undecyl ring system. El-Sharkawy and Abul-Hajj demonstrated (10) that binding to rat uterine estrogen receptors requires a free 4-OH phenolic group (devoid of methylation or glycosylation). Loss of estrogenicity was, for instance, observed with 2,4-dimethoxy-ZON, one of the metabolites produced by Cunninghamella bainieri ATCC 9244B. Nevertheless, this rule cannot be generalized, as 8′-hydroxyzearalenone formed by Streptomyces rimosus NRRL 2234, despite having a free 4-phenolic hydroxyl group, did not bind to the estrogen receptor. Also, other authors reported that 8′-hydroxyzearalenone and 8′-epi-hydroxyzearalenone are nonestrogenic (13). However, so far, no practical application in feed or food detoxification has been found for the microorganisms producing these compounds.It has been shown previously that the yeast Trichosporon mycotoxinivorans has a very high capability to degrade both ochratoxin A (OTA) and ZON (22, 26, 27). When T. mycotoxinivorans is used as a feed additive preparation, microbial degradation of the mycotoxins is assumed to take place in the gastrointestinal tract of the animal after consumption of contaminated feed. The protective effect of T. mycotoxinivorans against OTA toxicity has already been shown with broiler chicken (24).In the present study we report the isolation, analytical characterization, and structure elucidation, as well as the evaluation, of the estrogenic activity of the main degradation product of ZON produced by T. mycotoxinivorans.  相似文献   

3.
A new type of reactor, an attrition bioreactor, was tested to achieve a higher rate and extent of enzymatic saccharification of cellulose than is possible with conventional methods. The reactor consisted of a jacketted stainless-steel vessel with shaft, stirrer, and milling media, which combined the effect of the mechanical action of wet milling with cellulose hydrolysis. The substrates tested were newsprint and white-pine heartwood. The performance of the reactor was excellent. The extent and rate of enzymatic hydrolysis could be markedly improved over other methods. The power consumption of the attrition bioreactor was also measured. The cellulase enzyme deactivation during attrition milling was not significant.  相似文献   

4.
In this study the biotransformation of lignin by-products of beechwood pulping with a soil-inhabiting yeast strain of Trichosporon pullulans was examined. The structural and molecular changes in the lignin during a cultivation process were determined by 13C NMR spectroscopy and gel permeation chromatography analysis, which confirmed the ability of the yeast strain tested to biodegrade lignin. Enzymatic analysis showed the presence of lignin peroxidase and Mn(II) peroxidase in the culture supernatant. The ligninolytic activity of both enzymes increased under carbon-depleted conditions. This observation is particularly important in the biodegradation of recalcitrant lignins in soil.  相似文献   

5.
A yeast strain isolated from the hindgut of the lower termite Mastotermes darwiniensis (Mastotermitidae) was found to represent a new member of the genus Trichosporon. Trichosporon mycotoxinivorans is closely related to T. loubieri on the basis of the phylogenetic trees based on the D1/D2 region of 26S rDNA, an approx. 600 bp fragment of the 18S rDNA and both ITS regions. However, the two species differ at nine positions in the D1/D2 region of 26S rDNA. The IGS1 region of T. mycotoxinivorans is 401 bp long. T. mycotoxinivorans is distinguished from T. loubieri by its ability to assimilate inulin and galactitol, and its inability to grow at 40 °C. The name of this newly isolated strain refers to an important characteristics of T. mycotoxinivorans to detoxify mycotoxins such as ochratoxin A and zearalenone. Therefore this strain can be used for the deactivation of the respective mycotoxins in animal feeds.  相似文献   

6.
Candida antarctica or Candida apicola synthesized surfactants (glycolipids) in the cultivation medium supplemented with oil refinery waste, either with soapstock (from 5.0% to 12.0% v/v) or post-refinery fatty acids (from 2.0% to 5.0% v/v). The efficiency of glycolipids synthesis was determined by the amount of waste supplemented to the medium and was from 7.3 to 13.4 g/l and from 6.6 to 10.5 g/l in the medium supplemented with soapstock and post-refinery fatty acids, respectively. The studied yeast also synthesized glycolipids in the non-supplemented medium however, by the enrichment of medium with the oil refinery waste, a 7.5-8.5-fold greater concentration of glycolipids was obtained in the post-culture liquid then in the medium without addition of oil refinery waste. The yeast synthesized from 6.6 to 10.3 g dry biomass/l and the intra-cellular fat content was from 16.8% to 30.2%. The efficiency of glycolipids synthesis was determined by yeast species, medium acidity and culture period. The surface tension of the post-culture liquid separated from yeast biomass was reduced to 35.6 mN/m, which corresponded to the surface tension obtained at the critical micelle concentration of glycolipids.  相似文献   

7.
Summary Kinnow-mandarin waste (peel, pulp and seeds) was assessed for single-cell protein (SCP) production byChaetomium globosum andSporotrichum pulverulentum in shake-flask culture. The maximum protein enrichment (32% and 34%) of the substrate was achieved after 5 and 7 days of incubation by the two organisms, respectively. Of various nitrogen sources, NaNO3 and NH4Cl gave maximum protein enrichment of the substrate byC. globosum andS. pulverulentum, respectively.
Bioconversion des résidus de la mandarine-kinnow en protéine uni-cellulaire
Résumé On a examiné la possibilité de produire des protéines uni-cellulaires (POU) à partir de résidus de la mandarine-kinnow (pelures, pulpe, et pépins) par la culture deChaetomium globosum et deSporotrichum pulverulentum en flacons agités. L'enrichissement maximum en protéines du substrat, soit 32 et 34% est obtenu après 5 et 7 jours d'incubation respectivement par les deux organismes. Parmi les diverses sources d'azote, NaNO3 et NH4Cl ont permis respectivement l'enrichissement maximum en protéines du substrat parC. globosum etS. pulverulentum.
  相似文献   

8.
An optimized protocol for the bioconversion of eucalyptus bark was devised. It comprised: (i) mechanical reduction in bark size to 0.5-3.0 cm, (ii) moistening to 60-65%, (iii) fortification with ligninase-rich fungus Volvariella sp. (S-1) and 2% urea and (iv) maintenance of this composting mix under aerobic and ambient condition for 14-15 weeks. The resulting bark soil conditioner (BSC) was an easily crumbling, reddish brown biomass, with physico-chemical and microbial properties which would enrich soil fertility/productivity.  相似文献   

9.
The objective of the present work was: (i) to enable biodiesel production from acid waste lard; (ii) to study the esterification reaction as possible pre-treatment at different temperatures, catalyst amount and reaction times; (iii) to evaluate biodiesel quality according to EN 14214 after basic transesterification of the pre-treated fat; and (iv) to predict the impact of using such waste as raw material in mixture with soybean oil. Temperature and catalyst amount were the most important reaction conditions which mostly affected biodiesel quality, namely viscosity and purity. The selected pre-treatment conditions were 65 °C, 2.0 wt% H2SO4 and 5 h, which allowed obtaining a product with a viscosity of 4.81 mm2 s−1 and a purity of 99.6 wt%. The proposed pre-treatment was effective to enable acid wastes as single raw materials for biodiesel production with acceptable quality; however, low yields were obtained (65 wt%). Alkali transesterification of a mixture of waste lard and soybean oil resulted in a product with a purity of 99.8 wt% and a yield of 77.8 wt%, showing that blending might be an interesting alternative to recycle such wastes. Also, because in addition to using conventional and relatively economical processes, some biodiesel properties depending on the raw material composition (such as the iodine value) might even be improved.  相似文献   

10.
Selected biodegradable municipal solid waste fractions were subjected to fifteen different pre-hydrolysis treatments to obtain the highest glucose yield for bio-ethanol production. Pre-hydrolysis treatments consisted of dilute acid (H2SO4, HNO3 or HCl, 1 and 4%, 180 min, 60°C), steam treatment (121 and 134°C, 15 min), microwave treatment (700 W, 2 min) or a combination of two of them. Enzymatic hydrolysis was carried out with Trichoderma reesei and Trichoderma viride (10 and 60 FPU g−1 substrate). Glucose yields were compared using a factorial experimental design. The highest glucose yield (72.80%) was obtained with a pre-hydrolysis treatment consisting of H2SO4 at 1% concentration, followed by steam treatment at 121°C, and enzymatic hydrolysis with Trichoderma viride at 60 FPU g−1 substrate. The contribution of enzyme loading and acid concentration was significantly higher (49.39 and 47.70%, respectively), than the contribution of temperature during steam treatment (0.13%) to the glucose yield.  相似文献   

11.
L(+)-lactic acid production was investigated using an enzymatic hydrolysate of waste office automation (OA) paper in a culture of the filamentous fungus Rhizopus oryzae. In 4 d culture, 82.8 g/l glucose, 7 g/l xylose, and 3.4 g/l cellobiose contained in the hydrolysate were consumed to produce 49.1 g/l of lactic acid. The lactic acid yield and production rate were only 0.59 g/g and 16.3 g/l/d, respectively, only 75% and 61% of the results from the glucose medium. The low production rate from waste OA hydrolysate was elucidated by trials using xylose as the sole carbon source; in those trials, the lactic acid production rate was 7.3 g/l/d, only 28% that of glucose or cellobiose. The low lactic acid yield from waste OA hydrolysate was clarified by trials using artificial hydrolysates comprised of 7:2:1 or 7:1:2 ratios of glucose:cellobiose:xylose. For both, the lactic acid production rate of 17.4 g/l/d matched that of waste OA paper, while the lactic acid yield was similar to that of the glucose medium. This indicates that the production rate may be inhibited by xylose derived from hemicellulose, and the yield may be inhibited by unknown compounds derived from paper pulp.  相似文献   

12.
The objective of the experiment was to use starch processing waste as an alternative growth medium for cultivation of mycelia of the mushroom Phellinus linteus and to find an optimum condition under solid-state cultivation. Response surface analysis along with a central composite design was successfully applied to approximate the simultaneous effects of the substrate concentration (16-36 g l(-1)), pH (4.5-6.5), and temperature (25-35 degrees C) on the mycelial growth rate. In the model, pH and temperature significantly affected the mycelial growth but substrate concentration did not. The optimal substrate concentration, pH, and temperature for maximizing growth rate of P. linteus mycelia were found to be 16.5 g l(-1), pH 6.0, and 29.7 degrees C, respectively. Subsequent verification of these levels agreed with model predictions and the maximum mycelial growth rate at these conditions was 6.1 +/- 0.8 mm day(-1). Therefore, the results of the experiments suggest that starch processing waste could be utilized as a growth substrate for the cultivation of the mushroom mycelia of P. linteus, enhancing the usefulness of this byproduct of the starch manufacturing industry. This approach is likely to be useful for establishing similar parameters for the cultivation of other fungi.  相似文献   

13.
目的:利用酿酒酵母(Saccharomyces cerevisiae CICIMY008 6)菌体在油酸-水两 相体系中转化L-苯丙氨酸生成2-苯乙醇,以期解除产物抑制的同时降低萃取相油酸对转化的 不利影响,提高2-苯乙醇产量.方法:对2-苯乙醇的生成与菌体生长的关系进行考察,以确 定菌体转化法的可行性;通过单因素试验和正交设计试验获得转化培养基最佳配方;对菌体 转化条件进行优化.结果:向装液量为25mL/250mL转化培养基中加入0.6g 酵母湿菌体,30℃ 、100r/min条件下转化,9h加入等体积油酸,催化27h,产物浓度达4.55g/L.结 论:2-苯乙醇的制备可以使用菌体转化法,该法可在一定程度上克服两相转化体系中油酸的毒性影响.  相似文献   

14.
Summary From enrichment cultures inoculated with water and sediments of a waste-water pond of a sugar refinery several photosynthetic nonsulphur bacteria have been isolated and tested for the ability to produce molecular hydrogen in the light. Strains have been found that utilize the freshly used, untreated waste substrate with higher yields than the laboratory strain used so far. Under the test conditions one strain showed higher hydrogen production rates from waste water than from any synthetic substrate.  相似文献   

15.
Gluconic acid production was investigated using an enzymatic hydrolysate of waste office automation paper in a culture of Aspergillus niger. In repeated batch cultures using flasks, saccharified solution medium (SM) did not show any inhibitory effects on gluconic acid production compared to glucose medium (GM). The average gluconic acid yields were 92% (SM) and 80% (GM). In repeated batch cultures using SM in a turbine blade reactor (TBR), the gluconic acid yields were 60% (SM) and 67% (GM) with 80-100 g/l of gluconic acid. When pure oxygen was supplied the production rate increased to four times higher than when supplying air. Remarkable differences in the morphology of A. niger and dry cell weight between SM and GM were observed. The difference in morphology may have caused a reduction of oxygen transfer, resulting in a decrease in gluconic acid production rate in SM.  相似文献   

16.
AlnA is the protein responsible for the emulsifying and solubilizing activity of the Acinetobacter radioresistens KA53 bioemulsifier alasan. AlnA was produced in Escherichia coli, purified to homogeneity and then used to measure the enhanced solubility of 12 polyaromatic hydrocarbons (PAHs). The amount of PAH solubilized was directly proportional to AlnA concentration. The ratio of PAH solubilized by 40 μg/ml AlnA compared to that soluble in the aqueous buffer varied greatly, from 4 (fluorene) to 81 (hexylbenzylcyclosilane). Calculations of moles PAH solubilized per mole AlnA yielded values from 4.3 (hexylphenylbenzene) to 55.8 (1,10-phenanthrolene). There was no obvious relationship between the amount of PAH solubilized and its molecular weight or intrinsic solubility. Native gel electrophoresis indicated that AlnA formed hexamers in the presence of PAHs. With molar ratios of fluorene to AlnA of 0.75 or less, only the monomer was observed, whereas at ratios of 7.5 or higher, only the hexamer was detected. At an intermediate molar ratio of 2.6, both monomer and hexamer appeared. The data indicate that PAHs are initially solubilized by binding to the monomeric form of AlnA, and as the amount bound increases above one molecule PAH per AlnA, the protein aggregates to form a specific oligomer of 5–8 monomers which allows for the binding and solubilization of more PAH. Electronic Publication  相似文献   

17.
Development time, survival and final nutrient content of Hermetia illucens L. larvae depends on the substrates in which they develop. Mixing different waste types together can increase the performance and survival of the larvae, as well as their waste reduction. The main objective of this study was to evaluate the effect of different ratios of mixed fruit and vegetable waste with poultry manure on larval development time, size, biomass production, survival, bioconversion and waste reduction. Freshly hatched neonates (90 mg; approx. 6000 individuals) were placed on 12 kg of a mixture of fruit and vegetable waste and fresh, unprocessed poultry manure and held at 28 ± 0.5°C. Inclusion of fruit and vegetable waste varied from 0% to 100% in 10% increments. Initial temperature of the substrate was also measured. The individual mass of larvae increased significantly as more fruit and vegetable waste was included, from less than 81.3 ± 6.6 mg on poultry manure only to an average size of 211.6 ± 6.0 mg at 100% fruit and vegetable waste. After approximately 60% inclusion of fruit and vegetable waste the performance and survival of the larvae increased significantly while development time was reduced. A combination of high fruit and vegetable waste and low initial temperatures resulted in lower development time overall. The mixing of wastes can be applied in industry to further the goals of waste reduction and biomass production while incorporating low-quality wastes like poultry manure.  相似文献   

18.
Analysis by gas chromatography-mass spectrometry (GC-MS) of 24-h cultures of Clostridium butyricum type strain in synthetic BMG medium supplemented with various 2-amino acids (10 mM) revealed the presence of the corresponding 2-hydroxy acids. C. butyricum was able to bioconvert l-valine, dl-norvaline, l-leucine, dl-norleucine, l-methionine and l-phenylalanine as well as unusual 2-amino acids, i.e., l-2-aminobutyric acid, l-2-amino-4-pentenoic acid, dl-2-aminooctanoic acid, and dl-2-amino-4-phenylbutanoic acid. l-Isoleucine and cycloleucine were not converted into their corresponding 2-hydroxy acids. The bioconversion rate was maximal with dl-norvaline (6.2%). Chiral GC analysis demonstrated that only d-2-hydroxy-4-methylpentanoic acid is formed from l-leucine, indicating that the bioconversion is stereospecific, with inversion of configuration. d-Leucine and d-methionine were also converted to the corresponding 2-hydroxy acids. This observation opens new aspects in the study of C. butyricum and raises questions about the amino acid metabolism by this species.  相似文献   

19.
Transesterified vegetable oils (VOs) are promising alternative diesel fuel. Waste VOs are cheap and renewable but currently disposed of inadequately. In this work, waste palm oil was transesterified under various conditions. H2SO4 and different concentrations of HCl and ethanol at different excess levels were used. Higher catalyst concentrations (1.5-2.25 M) produced biodiesel with lower specific gravity, gamma, in a much shorter reaction time than lower concentrations. The H2SO4 performed better than HCl at 2.25 M, as it resulted in lower gamma. Moreover, a 100% excess alcohol effected significant reductions in reaction time and lower gamma relative to lower excess levels. The best process combination was 2.25 M H2SO4 with 100% excess ethanol which reduced gamma from an initial value of 0.916 to a final value of 0.8737 in about 3 h of reaction time. Biodiesel had the behavior of a Newtonian fluid.  相似文献   

20.
In this study, a microbial consortium from an acid-treated rumen fluid was used to improve the yields of H2 production from paper residues in batch reactors. The anaerobic batch reactors, which contained paper and cellulose, were operated under three conditions: (1) 0.5 g paper/L, (2) 2 g paper/L, and (3) 4 g paper/L. Cellulase was added to promote the hydrolysis of paper to soluble sugars. The H2 yields were 5.51, 4.65, and 3.96 mmol H2/g COD, respectively, with substrate degradation ranging from 56 to 65.4 %. Butyric acid was the primary soluble metabolite in the three reactors, but pronounced solventogenesis was detected in the reactors incubated with increased paper concentrations (2.0 and 4.0 g/L). A substantial prevalence of Clostridium acetobutylicum (99 % similarity) was observed in the acid-treated rumen fluid, which has been recognized as an efficient H2-producing strain in addition to ethanol and n-butanol which were also detected in the reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号