首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Proliferative potential of CFUs in bone marrow of young and adult mice (1.5-25 months) and thymus influence on this property were studied. It has been shown on the model of adult thymectomized mice that during "steady state" hematopoiesis, proliferative potential of bone marrow CFUs does not depend on the animals age and on thymic factors.  相似文献   

2.
The nidi of hemopoiesis appeared in the liver and the lymph nodes of DBA/2, C57BL/6j and F1 (C57BL/6j X CBA) strains of mice of the 6th day after a single intraperitoneal injection of cyclophosphamide in a dose of 200 mg/kg. This process was accompanied by the appearance of stem hemopoietic cells in the liver. Their maximum number was observed on the 6th and the 9th days. On the 12th day their level decreased, but it still exceeded the one in the animals which received a suspension of normal liver cells. In myelosan exhaustion the pool of the bone marrow and splenic stem cells, the subsequent cyclophosphamide injection failed to induce the appearance of the nidi of hemopoiesis and stem cells in the liver.  相似文献   

3.
Fariha MM  Chua KH  Tan GC  Tan AE  Hayati AR 《Cytotherapy》2011,13(5):582-593
Background aimsFetal membrane from human placenta tissue has been described as a potential source of stem cells. Despite abundant literature on amnion stem cells, there are limited studies on the stem cell properties of chorion-derived stem cells.MethodsThe main aim was to determine the stemness properties of serial-passaged human chorion-derived stem cells (hCDSC). Quantitative polymerase chain reaction (PCR) was performed to reveal the following stemness gene expression in serial-passaged hCDSC: Oct-4, Sox-2, FGF-4, Rex-1, TERT, Nanog (3), Nestin, FZD-9, ABCG-2 and BST-1. Cell growth rate was evaluated from passage (P) 1 until P5. The colony-forming unit–fibroblast (CFU-F) frequency of P3 and P5 cells and multilineage differentiation potential of P5 cells were determined. The immunophenotype of hCDSC was compared using the surface markers CD9, CD31, CD34, CD44, CD45, CD73, CD90, CD117, HLA-ABC and HLA-DR, -DP and -DQ. Immunostaining for trophoblast markers was done on P0, P1, P3 and P5 cells to detect the contamination of trophoblasts in culture, while chromosomal abnormality was screened by cytogenetic analysis of P5 cells.ResultsThe surface markers for mesenchymal lineage in hCDSC were more highly expressed at P5 compared with P3 and P0, indicating the increased purity of these stem cells after serial passage. Indeed, all the stemness genes except TERT were expressed at P1, P3 and P5 hCDSC. Furthermore, human chorion contained high clonogenic precursors with a 1:30 CFU-F frequency. Successful adipogenic, chondrogenic and osteogenic differentiation demonstrated the multilineage potential of hCDSC. The karyotyping analysis showed hCDSC maintained chromosomal stability after serial passage.ConclusionshCDSC retain multipotent potential even at later passages, hence are a promising source for cell therapy in the future.  相似文献   

4.
5.
In experiments on CBA mice it was shown that erythrocytes administered at the stage of prehemolysis or the stromal fraction of erythrolysate caused an additional increase in the haemopoietic stem cell migration which had been intensified by hemorrhage or hypoxic hypoxia.  相似文献   

6.
7.
8.
Leukotrienes (LTs), known primarily for their pathological roles, may also be capable of exerting "cytoprotection" against toxic agents in a manner similar to that of prostaglandins. In this report, it is shown that treatment of mice with leukotrienes C4, D4, E4, or B4 prior to sublethal irradiation increased the number of endogenous hematopoietic stem cells (E-CFU), with LTC4 producing the greatest response (LTC4 much greater than B4 greater than E4 greater than D4). LTC4-induced hematopoietic radioprotection was examined in greater detail using the exogenous spleen colony (CFU-S) and granulocyte/macrophage progenitor cell (GM-CFC) assays. The dose reduction factors for these cells in LTC4-treated mice at radiation doses resulting in 37% cell survival were 1.65 and 2.01, respectively.  相似文献   

9.
We studied the time course of appearance of CFUs (7-8 days old) in embryos of (C57B1/6 x CBA)F1 mice from the 8th day of embryonic development. Significant amounts of CFUs could be detected from the 10th day of development, initially in the body of the embryo from the stage of 30-33 pairs of somites, then in the yolk sac and still later, from the stage of about 40 pairs of somites, in liver anlage. CFUs could not be reliably detected until the 9th day of development either in the embryo itself or in the yolk sac. However, after incubation of nine day old embryos for four days in organ culture, such cultures contained CFUs. CFUs could be found in significant levels in embryos explanted from the embryos at the stage no earlier than 24 pairs of somites. When the yolk sac and the embryo were cultivated separately, CFUs could also be detected, however, the removal of liver primordium from the embryo did not influence the amount of CFUs in its body. CFUs were not found in cultures of liver primordium from nine day old embryos. Thus, we can detect pre-CFUs in 9 day old embryos at the stage 25-28 pairs of somites using the system of organ culture; at the same time CFUs cannot be found in intact embryos of the same age. These data provide evidence that before the establishment of liver hemopoiesis precursors of CFUs are located both in the yolk sac and in the embryo outside rudimentary liver. However, our results do not provide any data for the conclusion about the primary source of pre-CFUs in the mouse embryo.  相似文献   

10.
It has been more than 30 years since adipose tissue (AT) has been recognized as a central modulator orchestrating sophisticated process termed "immunometabolism". Nonetheless, despite its unique involvement in the regulation of immune and endocrine homeostasis, recent studies demonstrated that AT also contains significant number of hematopoietic stem/progenitor cells (HSPCs) that may be there "settling down" throughout life. In this article we will focus on presenting the current concepts regarding endocrine, immunological, and molecular mechanisms that may contribute to and regulate bone marrow (BM)-derived HSPCs homing into AT environment, as well as, highlight various structural and morphological similarities between BM and AT that might be involved in creating appropriate tissue niches for BM-derived HSPCs in AT. Finally, we will discuss how development of obesity or type 2 diabetes may influence balance of homing signals for HSPCs in AT environment.  相似文献   

11.
We investigated the expression of proliferative cell nuclear antigen (PCNA) in zebrafish to delineate the proliferative hematopoietic component during adult and embryonic hematopoiesis. Immunostaining for PCNA and enhanced green fluorescence protein (eGFP) was performed in wild-type and fli1-eGFP (endothelial marker) and gata1-eGFP (erythroid cell marker) transgenic fish. Expression of PCNA mRNA was examined in wild-type and chordin morphant embryos. In adult zebrafish kidney, the renal tubules are surrounded by endothelial cells and it is separated into hematopoietic and excretory compartments. PCNA was expressed in hematopoietic progenitor cells but not in mature neutrophils, eosinophils or erythroid cells. Some PCNA+ cells are scattered in the hematopoietic compartment of the kidney while others are closely associated with renal tubular cells. PCNA was also expressed in spermatogonial stem cells and intestine crypts, consistent with its role in cell proliferation and DNA synthesis. In embryos, PCNA is expressed in the brain, spinal cord and intermediate cell mass (ICM) at 24 h-post fertilization. In chordin morphants, PCNA is significantly upregulated in the expanded ICM. Therefore, PCNA can be used to mark cell proliferation in zebrafish hematopoietic tissues and to identify a population of progenitor cells whose significance would have to be further investigated.  相似文献   

12.
The effect of sheep red blood cells (SRBC) and human red blood cells (HRBC) on the amount of CFUs in the bone marrow and spleen of (CBA X C57BL/6) FI SRBC-tolerant mice was studied. The increase in the number of bone marrow and spleen CFUs was demonstrated in SRBC-tolerant mice injected with HRBC. Using SRBC test injection the increase in CFUs amount was observed in the spleen, but not the bone marrow, where the amount of CFUs remained unchanged.  相似文献   

13.
Defective interfering (DI) viruses are thought to cause oscillations in virus levels, known as the ‘Von Magnus effect’. Interference by DI viruses has been proposed to underlie these dynamics, although experimental tests of this idea have not been forthcoming. For the baculoviruses, insect viruses commonly used for the expression of heterologous proteins in insect cells, the molecular mechanisms underlying DI generation have been investigated. However, the dynamics of baculovirus populations harboring DIs have not been studied in detail. In order to address this issue, we used quantitative real-time PCR to determine the levels of helper and DI viruses during 50 serial passages of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in Sf21 cells. Unexpectedly, the helper and DI viruses changed levels largely in phase, and oscillations were highly irregular, suggesting the presence of chaos. We therefore developed a simple mathematical model of baculovirus-DI dynamics. This theoretical model reproduced patterns qualitatively similar to the experimental data. Although we cannot exclude that experimental variation (noise) plays an important role in generating the observed patterns, the presence of chaos in the model dynamics was confirmed with the computation of the maximal Lyapunov exponent, and a Ruelle-Takens-Newhouse route to chaos was identified at decreasing production of DI viruses, using mutation as a control parameter. Our results contribute to a better understanding of the dynamics of DI baculoviruses, and suggest that changes in virus levels over passages may exhibit chaos.  相似文献   

14.
Most tissues are patterned so that progenitors in different locations are programmed to have different properties. Stem cells from different regions of the nervous system acquire intrinsic differences in their properties as they migrate through distinct environments. Hematopoietic stem cells (HSCs) also migrate through diverse environments throughout life, raising the question of whether HSCs also acquire at least transient changes in their properties as they are exposed to diverse environments. Although we observed significant differences in hematopoiesis between the fetal liver and fetal spleen, we were not able to detect phenotypic, functional, or gene expression differences between the HSCs in these organs. Regional differences in definitive hematopoiesis are therefore not determined by regional differences between HSCs. We were also not able to detect phenotypic, functional, or gene expression differences between HSCs in different adult bone marrow compartments. Our failure to detect differences among stem cells from different regions of the hematopoietic system at the same time during development suggests that the hematopoietic system has evolved mechanisms to prevent the spatial reprogramming of HSC properties as they migrate between distinct environments.  相似文献   

15.
16.
17.
18.
19.
20.
The hallmark of vertebrate definitive hematopoiesis is the establishment of the hematopoietic stem/progenitor cell (HSPC) pool during embryogenesis. This process involves a defined ontogenic switching of HSPCs in successive hematopoietic compartments and is evolutionarily conserved from teleost fish to human. In zebrafish, HSPCs originate from the ventral wall of the dorsal aorta (VDA), from which they subsequently mobilize to an intermediate hematopoietic site known as the caudal hematopoietic tissue (CHT) and finally colonize the kidney for adult hematopoiesis. Despite substantial understanding of the ontogeny of HSPCs, the molecular basis governing migration, colonization and maintenance of HSPCs remains to be explored fully. Here, we report the isolation and characterization of two zebrafish mutants, rumba(hkz1) and samba(hkz2), that are defective in generating definitive hematopoiesis. We find that HSPC initiation in the VDA and subsequent homing to the CHT are not affected in these two mutants. However, the further development of HSPCs in the CHT is compromised in both mutants. Positional cloning reveals that Rumba is a novel nuclear C2H2 zinc-finger factor with unknown function and samba encodes an evolutionarily conserved protein that is homologous to human augmin complex subunit 3 (HAUS3). Furthermore, we show that these two factors independently regulate cell cycle progression of HSPCs and are cell autonomously required for HPSC development in the CHT. Our study identifies Rumba and Haus3 as two essential regulators of HSPC maintenance during zebrafish fetal hematopoiesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号