首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% Vo(2 max)). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser(711) (AMPK), TBC1D1 Ser(231) (AMPK), TBC1D1 Ser(660) (AMPK), TBC1D1 Ser(700) (AMPK), and TBC1D1 Thr(590) (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser(711), TBC1D1 Ser(231), and TBC1D1 Ser(660) but had no effect on TBC1D1 Ser(700). Exercise did not increase TBC1D1 Thr(590) phosphorylation or TBC1D1/AS160 PAS phosphorylation, consistent with the lack of Akt activation. These data demonstrate that a single bout of exercise regulates TBC1D1 and AS160 phosphorylation on multiple sites in human skeletal muscle.  相似文献   

2.
The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3alpha and Ser9 of GSK3beta. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3beta, but not GSK3alpha. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels.  相似文献   

3.
Glycogen synthase activity is increased in response to insulin and exercise in skeletal muscle. Part of the mechanism by which insulin stimulates glycogen synthesis may involve phosphorylation and activation of Akt, serine phosphorylation and deactivation of glycogen synthase kinase-3 (GSK-3), leading to dephosphorylation and activation of glycogen synthase. To study Akt and GSK-3 regulation in muscle, time course experiments on the effects of insulin injection and treadmill running exercise were performed in hindlimb skeletal muscle from male rats. Both insulin and exercise increased glycogen synthase activity (%I-form) by 2-3-fold over basal. Insulin stimulation significantly increased Akt phosphorylation and activity, whereas exercise had no effect. The time course of the insulin-stimulated increase in Akt was closely matched by GSK-3alpha Ser(21) phosphorylation and a 40-60% decrease in GSK-3alpha and GSK-3beta activity. Exercise also deactivated GSK-3alpha and beta activity by 40-60%. However, in contrast to the effects of insulin, there was no change in Ser(21) phosphorylation in response to exercise. Tyrosine dephosphorylation of GSK-3, another putative mechanism for GSK-3 deactivation, did not occur with insulin or exercise. These data suggest the following: 1) GSK-3 is constitutively active and tyrosine phosphorylated under basal conditions in skeletal muscle, 2) both exercise and insulin are effective regulators of GSK-3 activity in vivo, 3) the insulin-induced deactivation of GSK-3 occurs in response to increased Akt activity and GSK-3 serine phosphorylation, and 4) there is an Akt-independent mechanism for deactivation of GSK-3 in skeletal muscle.  相似文献   

4.
beta-catenin is a multifunctional protein involved in cell-cell adhesion and the Wnt signaling pathway. beta-Catenin is activated upon its dephosphorylation, an event triggered by Dishevelled (Dvl)-mediated phosphorylation and deactivation of glycogen synthase kinase-3beta (GSK-3beta). In skeletal muscle, both insulin and exercise decrease GSK-3beta activity, and we tested the hypothesis that these two stimuli regulate beta-catenin. Immunoblotting demonstrated that Dvl, Axin, GSK-3beta, and beta-catenin proteins are expressed in rat red and white gastrocnemius muscles. Treadmill running exercise in vivo significantly decreased beta-catenin phosphorylation in both muscle types, with complete dephosphorylation being elicited by maximal exercise. beta-Catenin dephosphorylation was intensity dependent, as dephosphorylation was highly correlated with muscle glycogen depletion during exercise (r(2) = 0.84, P < 0.001). beta-Catenin dephosphorylation was accompanied by increases in GSK-3beta Ser(9) phosphorylation and Dvl-GSK-3beta association. In contrast to exercise, maximal insulin treatment (1 U/kg body wt) had no effect on skeletal muscle beta-catenin phosphorylation or Dvl-GSK-3beta interaction. In conclusion, exercise in vivo, but not insulin, increases the association between Dvl and GSK-3beta in skeletal muscle, an event paralleled by beta-catenin dephosphorylation.  相似文献   

5.
We investigated time- and intensity-dependent effects of exercise on phosphorylation of Akt substrate of 160 kDa (AS160) in human skeletal muscle. Subjects performed cycle exercise for 90 min (67% VO2 peak, n=8), 20 min (80% VO2 peak, n=11), 2 min (110% of peak work rate, n=9), or 30 s (maximal sprint, n=10). Muscle biopsies were obtained before, during, and after exercise. In trial 1, AS160 phosphorylation increased at 60 min (60%, P=0.06) and further at 90 min of exercise (120%, P<0.05). alpha2beta2gamma3-AMP-activated protein kinase (AMPK) activity increased significantly to a steady-state level after 30 min, whereas alpha2beta2gamma1-AMPK activity increased after 60 min of exercise with a further significant increase after 90 min. alpha2beta2gamma1-AMPK activity and AS160 phosphorylation correlated positively (r2=0.55). In exercise trials 2, 3, and 4, alpha2beta2gamma3-AMPK activity but neither AS160 phosphorylation nor alpha2beta2gamma1-AMPK activity increased. Akt Ser473 phosphorylation was unchanged in all trials, whereas Akt Thr308 phosphorylation increased significantly in trial 3 and 4 only. These results show that AS160 is phosphorylated in a time-dependent manner during moderate-intensity exercise and suggest that alpha2beta2gamma1- but not alpha2beta2gamma3-AMPK may act in a pathway responsible for exercise-induced AS160 phosphorylation. Furthermore, we show that AMPK complexes in skeletal muscle are activated differently depending on exercise intensity and duration.  相似文献   

6.
Aconitase is a mitochondrial enzyme that converts citrate to isocitrate in the tricarboxylic acid cycle and is inactivated by reactive oxygen species (ROS). We investigated the effect of exercise/contraction, which is associated with elevated ROS production, on aconitase activity in skeletal muscle. Humans cycled at 75% of maximal workload, followed by six 60-s bouts at 125% of maximum workload. Biopsies were taken from the thigh muscle at rest and after the submaximal and supramaximal workloads. Isolated mouse extensor digitorum longus (EDL; fast twitch) and soleus (slow twitch) muscles were stimulated to perform repeated contractions for 10 min. Muscles were analyzed for enzyme activities and glutathione status. Exercise did not affect aconitase activity in human muscle despite increased oxidative stress, as judged by elevated levels of oxidized glutathione. Similarly, repeated contractions did not alter aconitase activity in soleus muscle. In contrast, repeated contractions significantly increased aconitase activity in EDL muscle by 50%, despite increased ROS production. This increase was not associated with a change in the amount of immunoreactive aconitase (Western blot) but was markedly inhibited by cyclosporin A, an inhibitor of the protein phosphatase calcineurin. Immunoprecipitation experiments demonstrated that aconitase was phosphorylated on serine residues. Aconitase in cell-free extracts was inactivated by the addition of the ROS hydrogen peroxide. In conclusion, the results suggest that aconitase activity can be regulated by at least two mechanisms: oxidation/reduction and phosphorylation/dephosphorylation. During contraction, a ROS-mediated inactivation of aconitase can be overcome, possibly by dephosphorylation of the enzyme. The dual-control system may be important in maintaining aerobic ATP production during muscle contraction. glutathione; reactive oxygen species  相似文献   

7.
The serine/threonine kinase Akt/PKB plays diverse roles in cells, and genetic studies have indicated distinct roles for the three Akt isoforms expressed in mammalian cells and tissues. Akt2 is a key signaling intermediate for insulin-stimulated glucose uptake and glycogen synthesis in skeletal muscle. Akt2 has also been shown to be activated by exercise and muscle contraction in both rodents and humans. In this study, we used Akt2 knockout mice to explore the role of Akt2 in exercise-stimulated glucose uptake and glycogen synthesis as well as intracellular signaling pathways that regulate glycogen metabolism in skeletal muscle. We found that Akt2 deficiency does not affect basal or exercise-stimulated glucose uptake or intracellular glycogen content in the soleus muscle. In addition, lack of Akt2 did not result in alterations in basal Akt Thr(308) or basal and contraction-stimulated glycogen synthase kinase-3beta (GSK-3beta) Ser(9) phosphorylation, glycogen synthase phosphorylation, or glycogen synthase activity. In contrast, in situ contraction failed to elicit normal increases in Akt T-loop Thr(308) phosphorylation and GSK-3alpha Ser(21) phosphorylation in tibialis anterior muscles from Akt2-deficient animals. Our data establish a key role for Akt2 in the regulation of GSK-3alpha Ser(21) phosphorylation with contraction and add genetic evidence to support the separation of the intracellular pathways regulated by insulin and exercise that converge on glucose uptake and glycogen synthesis in skeletal muscle.  相似文献   

8.
9.
Wnt signaling controls the phosphorylation status of beta-catenin   总被引:19,自引:0,他引:19  
At the heart of the canonical Wnt signaling cascade, adenomatous polyposis coli (APC), axin, and GSK3 constitute the so-called destruction complex, which controls the stability of beta-catenin. It is generally believed that four conserved Ser/Thr residues in the N terminus of beta-catenin are the pivotal targets for the constitutively active serine kinase GSK3. In cells that do not receive Wnt signals, glycogen synthase kinase (GSK) is presumed to phosphorylate beta-catenin, thus marking the latter for proteasomal degradation. Wnt signaling inhibits GSK3 activity. As a consequence, beta-catenin would no longer be phosphorylated and accumulate to form nuclear complexes with TCF/LEF factors. Although mutations in or near the N-terminal Ser/Thr residues stabilize beta-catenin in several types of cancer, the hypothesis that Wnt signaling controls phosphorylation of these residues remains unproven. We have generated a monoclonal antibody that recognizes an epitope containing two of the four residues when both are not phosphorylated. The epitope is generated upon Wnt signaling as well as upon pharmacological inhibition of GSK3 by lithium, providing formal proof for the regulated phosphorylation of the Ser/Thr residues of beta-catenin by Wnt signaling. Immunohistochemical analysis of mouse embryos utilizing the antibody visualizes sites that transduce Wnt signals through the canonical Wnt cascade.  相似文献   

10.
Wu G  He X 《Biochemistry》2006,45(16):5319-5323
Beta-catenin phosphorylation at serine 45 (Ser45), threonine 41 (Thr41), Ser37, and Ser33 is critical for beta-catenin degradation, and regulation of beta-catenin phosphorylation is a central part of the canonical Wnt signaling pathway. Beta-catenin mutations at Ser45, Thr41, Ser37, and Ser33 perturb beta-catenin degradation and are frequently found in cancers. It is established that Ser45 phosphorylation by casein kinase I (CKI) initiates phosphorylation at Thr41, Ser37, and Ser33 by glycogen synthase kinase 3 (GSK3) and that phosphorylated Ser37 and Ser33 are recognized by the F-box protein beta-TrCP, a component of a ubiquitin ligase complex that mediates beta-catenin degradation. While the roles of Ser45, Ser37, and Ser33 are well documented, the function of Thr41 remains less defined. Here we show that Thr41 strictly acts as a phosphorylation relay residue and that the Ser-X-X-X-Ser (X is any amino acid) motif is obligatory for beta-catenin phosphorylation by GSK3. Beta-catenin phosphorylation/degradation and its regulation by Wnt can occur normally in the absence of Thr41 as long as the Ser-X-X-X-Ser motif/spacing is preserved. These results suggest that Thr41 functions to bridge sequential phosphorylation from Ser45 to Ser37 and provide further insights into the discrete steps and logic in beta-catenin phosphorylation-degradation.  相似文献   

11.
After a single bout of exercise, insulin action is increased in the muscles that were active during exercise. The increased insulin action has been shown to involve glucose transport, glycogen synthesis, and glycogen synthase (GS) activation as well as amino acid transport. A major mechanism involved in increased insulin stimulation of glucose uptake after exercise seems to be the exercise-associated decrease in muscle glycogen content. Muscle glycogen content also plays a pivotal role for the activity of GS and for the ability of insulin to increase GS activity. Insulin signaling in human skeletal muscle is activated by physiological insulin concentrations, but the increase in insulin action after exercise does not seem to be related to increased insulin signaling [insulin receptor tyrosine kinase activity, insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (RS1), IRS-1-associated phosphatidylinositol 3-kinase activity, Akt phosphorylation (Ser(473)), glycogen synthase kinase 3 (GSK3) phosphorylation (Ser(21)), and GSK3alpha activity], as measured in muscle lysates. Furthermore, insulin signaling is also largely unaffected by exercise itself. This, however, does not preclude that exercise influences insulin signaling through changes in the spatial arrangement of the signaling compounds or by affecting unidentified signaling intermediates. Finally, 5'-AMP-activated protein kinase has recently entered the stage as a promising player in explaining at least a part of the mechanism by which exercise enhances insulin action.  相似文献   

12.
Akt/protein kinase B is a serine/threonine kinase that has emerged as a critical signaling component for mediating numerous cellular responses. Contractile activity has recently been demonstrated to stimulate Akt signaling in skeletal muscle. Whether physiological exercise in vivo activates Akt is controversial, and the initiating factors that result in the stimulation of Akt during contractile activity are unknown. In the current study, we demonstrate that treadmill running exercise of rats using two different protocols (intermediate high or high-intensity exhaustive exercise) significantly increases Akt activity and phosphorylation in skeletal muscle composed of various fiber types. To determine if Akt activation during contractile activity is triggered by mechanical forces applied to the skeletal muscle, isolated skeletal muscles were incubated and passively stretched. Passive stretch for 10 min significantly increased Akt activity (2-fold) in the fast-twitch extensor digitorum longus (EDL) muscle. However, stretch had no effect on Akt in the slow-twitch soleus muscle, although there was a robust phosphorylation of the stress-activated protein kinase p38. Similar to contraction, stretch-induced Akt activation in the EDL was fully inhibited in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin, whereas glycogen synthase kinase-3 (GSK3) phosphorylation was only partially inhibited. Stretch did not cause dephosphorylation of glycogen synthase on GSK3-targeted sites in the absence or presence of wortmannin. We conclude that physiological exercise in vivo activates Akt in multiple skeletal muscle fiber types and that mechanical tension may be a part of the mechanism by which contraction activates Akt in fast-twitch muscles.  相似文献   

13.
The subcellular localization of insulin signaling proteins is altered by various stimuli such as insulin, insulin-like growth factor I, and oxidative stress and is thought to be an important mechanism that can influence intracellular signal transduction and cellular function. This study examined the possibility that exercise may also alter the subcellular localization of insulin signaling proteins in human skeletal muscle. Nine untrained males performed 60 min of cycling exercise (approximately 67% peak pulmonary O2 uptake). Muscle biopsies were sampled at rest, immediately after exercise, and 3 h postexercise. Muscle was fractionated by centrifugation into the following crude fractions: cytosolic, nuclear, and a high-speed pellet containing membrane and cytoskeletal components. Fractions were analyzed for protein content of insulin receptor, insulin receptor substrate (IRS)-1 and -2, p85 subunit of phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3 (GSK-3). There was no significant change in the protein content of the insulin signaling proteins in any of the crude fractions after exercise or 3 h postexercise. Exercise had no significant effect on the phosphorylation of IRS-1 Tyr612 in any of the fractions. In contrast, exercise increased (P < 0.05) the phosphorylation of Akt Ser473 and GSK-3alpha/beta Ser9/21 in the cytosolic fraction only. In conclusion, exercise can increase phosphorylation of downstream insulin signaling proteins specifically in the cytosolic fraction but does not result in changes in the subcellular localization of insulin signaling proteins in human skeletal muscle. Change in the subcellular protein localization is therefore an unlikely mechanism to influence signal transduction pathways and cellular function in skeletal muscle after exercise.  相似文献   

14.
Protein kinase B (PKB, Akt) is a Ser/Thr kinase involved in the regulation of cell survival, proliferation, and metabolism and is activated by dual phosphorylation on Thr(308) in the activation loop and Ser(473) in the hydrophobic motif. It plays a contributory role to platelet function, although little is known about its regulation. In this study, we investigated the role of the mammalian target of rapamycin complex (mTORC)-2 in Akt regulation using the recently identified small molecule ATP competitive mTOR inhibitors PP242 and Torin1. Both PP242 and Torin1 blocked thrombin and insulin-like growth factor 1-mediated Akt Ser(473) phosphorylation with an IC(50) between 1 and 5 nm, whereas the mTORC1 inhibitor rapamycin had no effect. Interestingly, PP242 and Torin1 had no effect on Akt Thr(308) phosphorylation, Akt1 activity, and phosphorylation of the Akt substrate glycogen synthase kinase 3β, indicating that Ser(473) phosphorylation is not necessary for Thr(308) phosphorylation and maximal Akt1 activity. In contrast, Akt2 activity was significantly reduced, concurrent with inhibition of PRAS40 phosphorylation, in the presence of PP242 and Torin1. Other signaling pathways, including phospholipase C/PKC and the MAPK pathway, were unaffected by PP242 and Torin1. Together, these results demonstrate that mTORC2 is the kinase that phosphorylates Akt Ser(473) in human platelets but that this phosphorylation is dispensable for Thr(308) phosphorylation and Akt1 activity.  相似文献   

15.
Previous studies in animals have demonstrated that a single period of aerobic exercise induces a rise in the skeletal muscle activity of the antioxidant enzymes superoxide dismutase and catalase and an increase in the muscle content of heat shock proteins (HSPs). The purpose of this study was to examine the time course of response of human skeletal muscle superoxide dismutase and catalase activities and the content of HSP60 and HSP70 after a period of exhaustive, nondamaging aerobic exercise. Seven volunteers undertook one-legged cycle ergometry at 70% maximal oxygen uptake for 45 min. Biopsies were obtained from the vastus lateralis muscle 7 days before and at 1, 2, 3, and 6 days after exercise. Muscle superoxide dismutase activity increased to a peak at 3 days postexercise, muscle catalase activities were unchanged, and muscle content of HSP60 and the inducible HSP70 increased by variable amounts to reach means of 190% and 3,100% of preexercise values, respectively, by 6 days postexercise. These data indicate that human skeletal muscle responds to a single bout of nondamaging exercise by increasing superoxide dismutase activity and provide the first evidence of an increase in HSP content of human skeletal muscle after a submaximal exercise bout.  相似文献   

16.
This study investigated exercise adaptation of signaling mechanisms that control Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity in rat skeletal muscle. An acute bout of exercise increased total and NKCC-mediated (86)Rb influx. Inhibition of extracellular signal-regulated kinase (ERK) activation abolished the exercise-induced NKCC upregulation. Treadmill training (20 m/min, 20% grade, 30 min/day, 5 days/wk) stimulated total (86)Rb influx and increased NKCC activity in the soleus muscle after 2 wk and in the plantaris muscle after 4 wk. Exercise-induced NKCC activity was associated with a 1.4- to 2-fold increase in ERK phosphorylation. Isoproterenol, which activates ERK and NKCC in sedentary muscle, caused a remarkable inhibition of the exercise-induced NKCC activity. Furthermore, isoproterenol inhibition of exercise-induced NKCC activity was accompanied with decreased ERK phosphorylation in the plantaris muscle. Akt (protein kinase B) phosphorylation on both Thr(308) and Ser(473), which activates Akt and inhibits NKCC activity in sedentary muscle, was stimulated by acute and chronic exercise. This Akt activation was unaffected by isoproterenol. These results indicate an immediate and persistent exercise adaptation of the signal pathways that participate in the control of potassium transport.  相似文献   

17.
Microtubule-associated protein tau contains a consensus motif for protein kinase B/Akt (Akt), which plays an essential role in anti-apoptotic signaling. The motif encompasses the AT100 double phospho-epitope (Thr212/Ser214), a specific marker for Alzheimer's disease (AD) and other neurodegenerations, raising the possibility that it could be generated by Akt. We studied Akt-dependent phosphorylation of tau protein in vitro. We found that Akt phosphorylated both Thr212 and Ser214 in the longest and shortest tau isoforms as determined using phospho site-specific antibodies against tau. Akt did not phosphorylate other tau epitopes, including Tau-1, AT8, AT180, 12E8 and PHF-1. The Akt-phosphorylated tau retained its initial electrophoretic mobility. Immunoprecipitation studies with phospho-specific Thr212 and Ser214 antibodies revealed that only one of the two sites is phosphorylated per single tau molecule, resulting in tau immunonegative for AT100. Mixed kinase studies showed that prior Ser214 phosphorylation by Akt blocked protein kinase A but not GSK3beta activity. On the other hand, GSK3beta selectively blocked Ser214 phosphorylation, which was prevented by lithium. The results suggest that Akt may be involved in AD-specific phosphorylation of tau at the AT100 epitope in conjunction with other kinases. Our data suggest that phosphorylation of tau by Akt may play specific role(s) in Akt-mediated anti-apoptotic signaling, particularly relevant to AD and other neurodegenerations.  相似文献   

18.
Male heterozygous TG(mREN2)27 rats (TGR) overexpress a murine renin transgene, display marked hypertension, and have insulin resistance of skeletal muscle glucose transport and insulin signaling. We have shown previously that voluntary exercise training by TGR improves insulin-mediated skeletal muscle glucose transport (Kinnick TR, Youngblood EB, O'Keefe MP, Saengsirisuwan V, Teachey MK, and Henriksen EJ. J Appl Physiol 93: 805-812, 2002). The present study evaluated whether this training-induced enhancement of muscle glucose transport is associated with upregulation of critical insulin signaling elements, including insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3. TGR remained sedentary or ran spontaneously in activity wheels for 6 wk, averaging 7.1 +/- 0.8 km/day by the end of week 3 and 4.3 +/- 0.5 km/day over the final week of training. Exercise training reduced total abdominal fat by 20% (P < 0.05) in TGR runners (2.64 +/- 0.01% of body weight) compared with sedentary TGR controls (3.28 +/- 0.01%). Insulin-stimulated (2 mU/ml) glucose transport activity in soleus muscle was 36% greater in TGR runners compared with sedentary TGR controls. However, the protein expression and functionality of tyrosine phosphorylation of insulin receptor and IRS-1, IRS-1 associated with the p85 regulatory subunit of phosphatidylinositol 3-kinase, and Ser473 phosphorylation of Akt were not altered by exercise training. Only insulin-stimulated glycogen synthase kinase-3beta Ser9 phosphorylation was increased (22%) by exercise training. These results indicate that voluntary exercise training in TGR can enhance insulin-mediated glucose transport in skeletal muscle, as well as reduce total abdominal fat mass. However, this adaptive response in muscle occurs independently of modifications in the proximal elements of the insulin signaling cascade.  相似文献   

19.
There is evidence that increasing carbohydrate (CHO) availability during exercise by raising preexercise muscle glycogen levels attenuates the activation of AMPKalpha2 during exercise in humans. Similarly, increasing glucose levels decreases AMPKalpha2 activity in rat skeletal muscle in vitro. We examined the effect of CHO ingestion on skeletal muscle AMPK signaling during exercise in nine active male subjects who completed two 120-min bouts of cycling exercise at 65 +/- 1% V(O2 peak). In a randomized, counterbalanced order, subjects ingested either an 8% CHO solution or a placebo solution during exercise. Compared with the placebo trial, CHO ingestion significantly (P < 0.05) increased plasma glucose levels and tracer-determined glucose disappearance. Exercise-induced increases in muscle-calculated free AMP (17.7- vs. 11.8-fold), muscle lactate (3.3- vs. 1.8-fold), and plasma epinephrine were reduced by CHO ingestion. However, the exercise-induced increases in skeletal muscle AMPKalpha2 activity, AMPKalpha2 Thr(172) phosphorylation and acetyl-CoA Ser(222) phosphorylation, were essentially identical in the two trials. These findings indicate that AMPK activation in skeletal muscle during exercise in humans is not sensitive to changes in plasma glucose levels in the normal range. Furthermore, the rise in plasma epinephrine levels in response to exercise was greatly suppressed by CHO ingestion without altering AMPK signaling, raising the possibility that epinephrine does not directly control AMPK activity during muscle contraction under these conditions in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号