首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence–structure relationships in loops. Loops differing by <25% in sequence identity fold into very similar structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts.  相似文献   

4.
5.

Background

Plasmids of Borrelia species are dynamic structures that contain a large number of repetitive genes, gene fragments, and gene fusions. In addition, the transposable element IS605/200 family, as well as degenerate forms of this IS element, are prevalent. In Helicobacter pylori, flanking regions of the IS605 transposase gene contain sequences that fold into identical small stem loops. These function in transposition at the single-stranded DNA level.

Methodology/Principal Findings

In work reported here, bioinformatics techniques were used to scan Borrelia plasmid genomes for IS605 transposable element specific stem loop sequences. Two variant stem loop motifs are found in the left and right flanking regions of the transposase gene. Both motifs appear to have dispersed in plasmid genomes and are found “free-standing” and phylogenetically conserved without the associated IS605 transposase gene or the adjacent flanking sequence. Importantly, IS605 specific stem loop sequences are also found at the 3′ ends of lipoprotein genes (PFam12 and PFam60), however the left and right sequences appear to develop their own evolutionary patterns. The lipoprotein gene-linked left stem loop sequences maintain the IS605 stem loop motif in orthologs but only at the RNA level. These show mutations whereby variants fold into phylogenetically conserved RNA-type stem loops that contain the wobble non-Watson-Crick G-U base-pairing. The right flanking sequence is associated with the family lipoprotein-1 genes. A comparison of homologs shows that the IS605 stem loop motif rapidly dissipates, but a more elaborate secondary structure appears to develop in its place.

Conclusions/Significance

Stem loop sequences specific to the transposable element IS605 are present in plasmid regions devoid of a transposase gene and significantly, are found linked to lipoprotein genes in Borrelia plasmids. These sequences are evolutionarily conserved and/or structurally developed in an RNA format. The findings show that IS605 stem loop sequences are multifaceted and are selectively conserved during evolution when the transposable element dissipates.  相似文献   

6.
In vitro selection of RNA against kanamycin B.   总被引:3,自引:0,他引:3  
Aminoglycosides are well-known antibiotics that function by interacting with ribosomal RNA in bacteria. In order to understand the molecular details between RNA and the drug, RNA aptamer was selected against kanamycin B. After 12 cycles of selection, RNA was cloned and sequenced. Among 9 clones, sequences of three clones were identical, suggesting the selected RNA was enriched. Among the cloned RNA molecules, the triplicated RNA was the maximum binding RNA. It showed a 180 nM affinity (KD) to the cognate aminoglycoside, as measured by a surface plasmon resonance, and a competition assay using a fluorescence anisotropy technique. The affinity of the maximum binding RNA to a similar aminoglycoside, tobramycin, was much stronger than 12 nM of KD. The binding site of the aminoglycoside in the maximum binding RNA was a stem loop located at the end of the 5' region. A stem loop structural motif, found in this study, was similar to those previously reported, even though the sequences of the RNA were totally different from the known sequences of the aminoglycoside binding site of other aptamers. The present study suggests that the aminoglycoside-binding region in RNA does not have a sequence specificity, but has a shape-specific bulged stem loop, even though it has a nanomolar affinity.  相似文献   

7.
8.
DNA aptamers which bind to cholic acid have been identified by in vitro selection from a pool of approximately 9x10(14) DNA molecules. After 13 rounds of selection, 19 clones with 95-100 nucleotide length were sequenced. Deletion-mutant experiments and computational sequence analysis suggested that all clones contained cholic acid binding sequences which could fold into three-way junction structures. By comparing the sequences involved in the predicted three-way junction structure of these 19 clones, it was determined that the nucleotide sequences and lengths of three stem and loop regions have no similarity. The most conserved structure seems to have three base pairs flanking the junction of the three stems and they may form a hydrophobic cavity in which they interact with cholic acid.  相似文献   

9.
10.
11.
12.
The tRNA anticodon loops always comprise seven nucleotides and is involved in many recognition processes with proteins and RNA fragments. We have investigated the nature and the possible interactions between the first (32) and last (38) residues of the loop on the basis of the available sequences and crystal structures. The data demonstrate the conservation of a bifurcated hydrogen bond interaction between residues 32 and 38, located at the stem/loop junction. This interaction leads to the formation of a non-canonical base-pair which is preserved in the known crystal structures of tRNA/synthetase complexes. Among the tRNA and tDNA sequences, 93 % of the 32.38 oppositions can be assigned to two families of isosteric base-pairs, one with a large (86 %) and the other with a much smaller (7 %) population. The remainder (7 %) of the oppositions have been assigned to a third family due to the lack of evidence for assigning them into the first two sets. In all families, the Y32.R38 base-pairs are not isosteric upon reversal (like the sheared G.A or wobble G.U pairs), explaining the strong conservation of a pyrimidine at position 32. Thus, the 32.38 interaction extends the sequence signature of the anticodon loop beyond the conserved U-turn at position 33 and the usually modified purine at position 37. A comparison with other loops containing both a singly hydrogen-bonded base-pair and a U-turn suggests that the 32.38 pair could be involved in the formation of a base triple with a residue in a ribosomal RNA component. It is also observed that two crystal structures of ribozymes (hammerhead and leadzyme) present similar base-pairs at the cleavage site.  相似文献   

13.
Nucleotide sequences of E. coli tRNAs and RNA I or RNA II (controlling replication of ColE1 plasmids) were compared using the computer. The homology between some of these molecules is over 60%. The distribution of homologous nucleotides among the functional elements (stems and loops) of either RNA I or RNA II and the tRNAs molecules was studied. It was found that the homologous domains are located mainly in the loop regions of RNA I or RNA II. A consensus sequence, the nonanucleotide AGUUGGUAG, was discovered in loop II of RNA I and in the dihydrouridylic loop of tRNAs showing homology with RNA I. Based on this observation, a hypothesis was drawn for a possible role of the tRNAs in the regulation of plasmid DNA replication.  相似文献   

14.
NMR methods were used to investigate a series of mutants of the pseudoknot within the gene 32 messenger RNA of bacteriophage T2, for the purpose of investigating the range of sequences, stem and loop lengths that can form a similar pseudoknot structure. This information is of particular relevance since the T2 pseudoknot has been considered a representative of a large family of RNA pseudoknots related by a common structural motif, previously referred to as 'common pseudoknot motif 1' or CPK1. In the work presented here, a mutated sequence with the potential to form a pseudoknot with a 6 bp stem2 was shown to adopt a pseudoknot structure similar to that of the wild-type sequence. This result is significant in that it demonstrates that pseudoknots with 6 bp in stem2 and a single nucleotide in loop1 are indeed feasible. Mutated sequences with the potential to form pseudoknots with either 5 or 8 bp in stem2 yielded NMR spectra that could not confirm the formation of a pseudoknot structure. Replacing the adenosine nucleotide in loop1 of the wild-type pseudoknot with any one of G, C or U did not significantly alter the pseudoknot structure. Taken together, the results of this study provide support for the existence of a family of similarly structured pseudoknots with two coaxially stacked stems, either 6 or 7 bp in stem2, and a single nucleotide in loop1. This family includes many of the pseudoknots predicted to occur downstream of the frameshift or readthrough sites in a significant number of viral RNAs.  相似文献   

15.
16.
17.
Quantitative structure-activity-relationship (QSAR) models have application in bioorganic chemistry mainly to the study of small sized molecules while applications to biopolymers remain not very developed. MicroRNAs (miRNAs), which are non-coding small RNAs, regulate a variety of biological processes and constitute good candidates to scale up the application of QSAR to biopolymers. The propensity of a small RNA sequence to act as miRNA depends on its secondary structure, which one can explain in terms of folding thermodynamic parameters. Then, thermodynamic QSAR can be used, for instance, for fast identification of miRNAs at early stages of development such as embryos and stem cells (called here esmiRNAs), and gain clarity inside cellular differentiation processes and diseases such as cancer. First, we calculated folding free energies (DeltaG), enthalpies (DeltaH), and entropies (DeltaS) as well as melting temperatures (T(m)) for 2623 small RNA sequences (including 623 esmiRNAs and 2000 negative control sequences). Next, we seek a QSAR classification model: esmiRNA=0.035 x T(m)-0.078 x DeltaS-8.748. The model correctly recognized 543 (87.2%) of esmiRNAs and 935 (93.5%) of non-esmiRNAs divided into both training and validation series. The model also recognized 908 out of 1000 additional negative control sequences. ROC curve analysis (area=0.93) demonstrated that the present model significantly differentiates from a random classifier. In addition, we map the influence of thermodynamic parameters over esmiRNA activity. Last, a double ordinate Cartesian plot of cross-validated residuals (first ordinate), standard residuals (second ordinate), and leverages (abscissa) defined the domain of applicability of the model as a squared area within +/-2 band for residuals and a leverage threshold of h=0.0074. The present is the first QSAR model for quickly accurate selection of new esmiRNAs with potential use in bioorganic and medicinal chemistry.  相似文献   

18.
Trans-activation of HIV-1 by the Tat protein is mediated through a cis-acting element (TAR) in the viral RNA. In order to obtain further insight into the molecular interactions for trans-activation, a detailed mutational analysis of TAR RNA was carried out. TAR RNA forms a hairpin structure with important sequence elements in the single-stranded bulge- and loop-domains. We found that the sequence of the base-pairs flanking the bulge is critical for Tat-mediated trans-activation. In addition, Tat-response is reduced when the bulge is forced into a base-paired configuration through the introduction of complementary nucleotides on the opposite side of the stem. Thus, the 3-nucleotide bulge and adjacent base-pairs comprise a recognition domain with both sequence- and structure-elements. Accessibility of the loop sequences is also important for Tat function, since base-pairing through the formation of a pseudoknot-like structure does inhibit Tat action. A third critical parameter that influences the magnitude of Tat response is the number of loop nucleotides. Finally, the relative spacing between the loop and the bulge is also important. We introduced additional base-pairs in the stem connecting the two domains. Such mutations progressively decreased the efficiency of Tat induction. Interestingly, activity of the HIV-2 Tat protein did markedly increase on targets with one or two additional basepairs. These results suggest that Tat interacts with a cellular loop-binding protein(s) to increase HIV gene expression.  相似文献   

19.
Evolution of secondary structure in the family of 7SL-like RNAs   总被引:8,自引:0,他引:8  
Primate and rodent genomes are populated with hundreds of thousands copies of Alu and B1 elements dispersed by retroposition, i.e., by genomic reintegration of their reverse transcribed RNAs. These, as well as primate BC200 and rodent 4.5S RNAs, are ancestrally related to the terminal portions of 7SL RNA sequence. The secondary structure of 7SL RNA (an integral component of the signal recognition particle) is conserved from prokaryotes to distant eukaryotic species. Yet only in primates and rodents did this molecule give rise to retroposing Alu and B1 RNAs and to apparently functional BC200 and 4.5S RNAs. To understand this transition and the underlying molecular events, we examined, by comparative analysis, the evolution of RNA structure in this family of molecules derived from 7SL RNA.RNA sequences of different simian (mostly human) and prosimian Alu subfamilies as well as rodent B1 repeats were derived from their genomic consensus sequences taken from the literature and our unpublished results (prosimian and New World Monkey). RNA secondary structures were determined by enzymatic studies (new data on 4.5S RNA are presented) and/or energy minimization analyses followed by phylogenetic comparison. Although, with the exception of 4.5S RNA, all 7SL-derived RNA species maintain the cruciform structure of their progenitor, the details of 7SL RNA folding domains are modified to a different extent in various RNA groups. Novel motifs found in retropositionally active RNAs are conserved among Alu and B1 subfamilies in different genomes. In RNAs that do not proliferate by retroposition these motifs are modified further. This indicates structural adaptation of 7SL-like RNA molecules to novel functions, presumably mediated by specific interactions with proteins; these functions were either useful for the host or served the selfish propagation of RNA templates within the host genome.Abbreviations FAM fossil Alu element - FLAM free left Alu monomer - FRAM free right Alu monomer - L-Alu left Alu subunit - R-Alu right Alu subunit Correspondence to: D. LabudaDedicated to Dr. Robert Cedergren on the occasion of his 25th anniversary at the University of Montreal  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号