首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spermatozoa must undergo capacitation to acquire fertilizing ability. Reactive oxygen species (ROS), such as superoxide anion, hydrogen peroxide H2O2, and nitric oxide (NO*), are involved in this process. We investigated the roles and interactions of ROS, the ERK cascade, and the phosphoinositide 3-kinase (PI3K)/Akt axis during human sperm capacitation. Two different agents, fetal cord serum ultrafiltrate and bovine serum albumin, similarly promoted capacitation and the associated phosphorylation of protein tyrosine residues (P-Tyr), threonine-glutamine-tyrosine (P-Thr-Glu-Tyr-P) motif, and MEK-like proteins (P-MEK-like proteins). Components of the ERK pathway modulated these phosphorylation events. ROS increased P-MEK-like proteins and NO* induced P-Thr-Glu-Tyr-P, possibly by acting on or downstream of Ras. The PI3K/Akt axis participated in capacitation and phosphorylation of Tyr and Thr-Glu-Tyr but not MEK-like proteins. H2O2 and NO* induced P-Tyr even in the presence of ERK pathway inhibitors, indicating that ROS also act downstream of this pathway. These new results indicate that ROS act on different transduction elements during sperm capacitation and regulate phosphorylation events that occur in parallel pathways that eventually lead to late phosphorylation of Tyr. These new data reinforce the concept that a complex network of differentially modulated pathways is needed for spermatozoa to become capacitated.  相似文献   

2.
Physiological processes are often activated by reactive oxygen species (ROS), such as the superoxide anion (O2) and nitric oxide (NO) produced by cells. We studied the interactions between NO and O2, and their generators (NO synthase, NOS, and a still elusive oxidase), in human spermatozoa during capacitation (transformations needed for acquisition of fertility). Albumin, fetal cord serum ultrafiltrate, and L-arginine triggered capacitation and ROS generation (NO and O2) and superoxide dismutase (SOD) and NOS inhibitors prevented all these effects. Surprisingly, capacitation due to exogenous NO (or O2) was also blocked by SOD (or NOS inhibitors). Probes used were proven specific and innocuous on spermatozoa. Whereas O2 was needed only for 30 min, the continuous NO generation was essential for hours. Capacitation caused a time-dependent increase in protein tyrosine nitration that was prevented by SOD and NOS inhibitors, suggesting that O2 and NO· also act via the formation of ONOO. Spermatozoa treated with NO (or O2) initiated a dose-dependent O2 (or NO) production, providing, for the first time in cells, a strong evidence for a two-sided ROS-induced ROS generation. Data presented show a close interaction between NO and O2 and their generators during sperm capacitation.  相似文献   

3.
Oxidative stress plays a major role in the life and death of mammalian spermatozoa. These gametes are professional generators of reactive oxygen species (ROS), which appear to derive from three potential sources: sperm mitochondria, cytosolic L‐amino acid oxidases, and plasma membrane Nicotinamide adenine dinucleotide phosphate oxidases. The oxidative stress created via these sources appears to play a significant role in driving the physiological changes associated with sperm capacitation through the stimulation of a cyclic adenosine monophosphate/Protein kinase A phosphorylation cascade, including the activation of Extracellular signal regulated kinase‐like proteins, massive up‐regulation of tyrosine phosphorylation in the sperm tail, as well as the induction of sterol oxidation. When generated in excess, however, ROS can induce lipid peroxidation that, in turn, disrupts membrane characteristics that are critical for the maintenance of sperm function, including the capacity to fertilize an egg. Furthermore, the lipid aldehydes generated as a consequence of lipid peroxidation bind to proteins in the mitochondrial electron transport chain, triggering yet more ROS generation in a self‐perpetuating cycle. The high levels of oxidative stress created as a result of this process ultimately damage the DNA in the sperm nucleus; indeed, DNA damage in the male germ line appears to be predominantly induced oxidatively, reflecting the vulnerability of these cells to such stress. Extensive evaluation of antioxidants that protect the spermatozoa against oxidative stress while permitting the normal reduction‐oxidation regulation of sperm capacitation is therefore currently being undertaken, and has already proven efficacious in animal models.  相似文献   

4.
Sperm capacitation is necessary for the fertilization of oocytes. During capacitation intracellular and membrane changes occur, that culminate with an exocytotic event called the acrosome reaction. The aim of this work was to study the participation of the superoxide anion (O2-.) and of hydrogen peroxide (H2O2) in the capacitation process and acrosome reaction in spermatozoa from cryopreserved bovine semen. Samples were capacitated with heparin or treated with the xanthine-xanthine oxidase-catalase system (X-XO-C) for the production of O2-. The percentage of capacitated spermatozoa was determined using the chlortetracycline (CTC) technique, by means of epifluorescence microscopy. Addition of X-XO-C to the incubation medium significantly induced capacitation (P < 0.05), but there were no differences with samples incubated with heparin. When the medium contained heparin or the X-XO-C, addition of superoxide dismutase (SOD, 0.5 mg/mL) significantly inhibited capacitation (P < 0.05). In samples treated with heparin and with diverse concentrations of H2O2 (10, 25, 50 and 250 microM) in the incubation medium, the percentage of capacitated spermatozoa was significantly reduced (P < 0.05); however, acrosome reaction was produced at concentrations of 10 and 25 microM H2O2. At concentrations greater than 25 microM H2O2 a deleterious effect was observed on sperm motility. From these results it may be inferred that O2-. is required in the capacitation process and that H2O2 may participate as an inductor of the acrosome reaction in spermatozoa from cryopreserved bovine semen.  相似文献   

5.
There is a dynamic interplay between pro- and anti-oxidant substances in human ejaculate. Excessive reactive oxygen species (ROS) generation can overwhelm protective mechanism and initiate changes in lipid and/or protein layers of sperm plasma membranes. Additionally, changes in DNA can be induced. The essential steps of lipid peroxidation have been listed as well as antioxidant substances of semen. A variety of detection techniques of lipid peroxidation have been summarized together with the lipid components of sperm membranes that can be subjected to stress. It is unsolved, a threshold for ROS levels that may induce functional sperm ability or may lead to male infertility.  相似文献   

6.
7.
Baumber J  Sabeur K  Vo A  Ball BA 《Theriogenology》2003,60(7):1239-1247
The objective of this study was to examine the influence of reactive oxygen species (ROS) on equine sperm capacitation. Motile equine spermatozoa were separated on a discontinuous Percoll gradient, resuspended at 10 x 10(6)ml in Tyrode's medium supplemented with BSA (0.5%) and polyvinyl alcohol (0.5%) and incubated at 39 degrees C for 2h with or without the xanthine (X; 0.1mM)-xanthine oxidase (XO; 0.01 U/ml) system or NADPH (0.25 mM). The importance of hydrogen peroxide or superoxide for capacitation was determined by the addition of catalase (CAT; 150 U/ml) or superoxide dismutase (SOD; 150 U/ml), respectively. Following incubation, acrosomal exocytosis was induced by a 5 min incubation at 39 degrees C with progesterone (3.18 microM), and sperm viability and acrosomal integrity were then determined by staining with Hoechst 33258 and fluoroisothiocyanate-conjugated Pisum sativum agglutin. To examine tyrosine phosphorylation, treatments were subjected to sodium dodecyl sulfate-polyacrylaminde gel electrophoresis (SDS-PAGE) followed by Western blot analysis with the anti-phosphotyrosine antibody (alpha-PY; clone 4G10). Capacitation with the X-XO system or NADPH led to a significant (P<0.0001) increase in live acrosome-reacted spermatozoa compared to controls. The addition of CAT or SOD prevented the increase in live acrosome-reacted spermatozoa associated with X-XO treatment. Incubation with the X-XO system was also associated with a significant (P<0.005) increase in tyrosine phosphorylation when compared to controls, which could be prevented by the addition of CAT but not SOD. This study indicates that ROS can promote equine sperm capacitation and tyrosine phosphorylation, suggesting a physiological role for ROS generation by equine spermatozoa.  相似文献   

8.
Hyperglycemia is associated with generation of reactive oxygen species (ROS), and this action may contribute to accelerated atherogenesis. We tested the hypothesis that hyperglycemia produces alterations in left anterior descending coronary artery (LAD) wall shear stress concomitant with endothelial dysfunction and ROS production in dogs (n = 12) instrumented for measurement of LAD blood flow, velocity, and diameter. Dogs were randomly assigned to receive vehicle (0.9% saline) or the superoxide dismutase mimetic 4- hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (tempol) and were administered intravenous infusions of d-glucose to achieve target blood glucose concentrations of 350 and 600 mg/dl (moderate and severe hyperglycemia, respectively). Endothelial function and ROS generation were assessed by coronary blood flow responses to acetylcholine (10, 30, and 100 ng/kg) and dihydroethidium fluorescence of myocardial biopsies, respectively. Indexes of wall shear stress were calculated with conventional fluid dynamics theory. Hyperglycemia produced dose-related endothelial dysfunction, increases in ROS production, and reductions in oscillatory shear stress that were normalized by tempol. The results suggest a direct association between hyperglycemia-induced ROS production, endothelial dysfunction, and decreases in oscillatory shear stress in vivo.  相似文献   

9.
Capacitation, the series of transformations that spermatozoa undergo to become fertile, is regulated by reactive oxygen species (ROS) and associated with an increase in the sulfhydryl content of Triton-soluble proteins. Our aims were to determine the fate of sulfhydryl groups in Triton-soluble proteins from capacitating human spermatozoa using two-dimensional (2D) gel electrophoresis, to evaluate the role of ROS in the changes observed, and to correlate the time course of the changes with that of the sperm generation of O(2)(*)(-). Triton-soluble proteins of control and capacitating human spermatozoa were labeled with 3-(N-maleimidylpropionyl) biocytin, separated by 2D gel electrophoresis, and probed with horseradish peroxidase-conjugated streptavidin. The sulfhydryl content of 10 out of the 14 proteins studied (pI: 4-7) was modified by the induction of capacitation, and the increases (by 200-400%, five proteins) and decreases (by 45-95%, five proteins) were prevented by superoxide dismutase and/or catalase. The alterations in protein sulfhydryl content occurred within 5-15 min but were reversed within 30-120 min. Three capacitation inducers triggered similar modifications. Therefore, human sperm capacitation is associated with rapid and reversible changes in protein sulfhydryl groups that appear to be redox regulated. The number of proteins affected, the types, and the kinetics of changes emphasize the complexity of sperm capacitation.  相似文献   

10.
Mammalian sperm are not able to fertilize immediately upon ejaculation; they become fertilization-competent after undergoing changes in the female reproductive tract collectively termed capacitation. Although it has been established that capacitation is associated with an increase in tyrosine phosphorylation, little is known about the role of this event in sperm function. In this work we used a combination of two dimensional gel electrophoresis and mass spectrometry to identify proteins that undergo tyrosine phosphorylation during capacitation. Some of the identified proteins are the mouse orthologues of human sperm proteins known to undergo tyrosine phosphorylation. Among them we identified VDAC, tubulin, PDH E1 beta chain, glutathione S-transferase, NADH dehydrogenase (ubiquinone) Fe-S protein 6, acrosin binding protein precursor (sp32), proteasome subunit alpha type 6b and cytochrome b-c1 complex. In addition to previously described proteins, we identified two testis-specific aldolases as substrates for tyrosine phosphorylation. Genomic and EST analyses suggest that these aldolases are retroposons expressed exclusively in the testis, as has been reported elsewhere. Because of the importance of glycolysis for sperm function, we hypothesize that tyrosine phosphorylation of these proteins can play a role in the regulation of glycolysis during capacitation. However, neither the Km nor the Vmax of aldolase changed as a function of capacitation when its enzymatic activity was assayed in vitro, suggesting other levels of regulation for aldolase function.  相似文献   

11.
Caltrin is a small and basic protein of the seminal vesicle secretion that inhibits sperm calcium uptake. The influence of rat caltrin on sperm physiological processes related to fertilizing competence was studied by examining its effect on 1) spontaneous acrosomal exocytosis, 2) protein tyrosine phosphorylation, and 3) sperm-egg interaction. Results show that the presence of caltrin during in vitro capacitation both reduced the rate of spontaneous acrosomal exocytosis without altering the pattern of protein tyrosine phosphorylation, and enhanced the sperm ability to bind to the zona pellucida (ZP). The significantly higher proportion of sperm with intact acrosome observed in the presence of caltrin was accompanied by a strong inhibition in the acrosomal hyaluronidase release. Enhancement of sperm-ZP binding was evident by the increase in the percentage of eggs with bound spermatozoa as well as in the number of bound sperm per egg. Similar results were obtained when the assays were performed using spermatozoa preincubated with caltrin and then washed to remove the unbound protein, indicating that the sperm-bound caltrin was the one involved in both acrosomal exocytosis inhibition and sperm-ZP binding enhancement. Caltrin bound to the sperm head was partially released during the acrosomal exocytosis induced by Ca-ionophore A23187. Indirect immunofluorescence and immunoelectron microscopy studies revealed that caltrin molecules distributed on the dorsal sperm surface disappeared after ionophore exposure, whereas those on the ventral region remained in this localization after the treatment. The present data suggest that rat caltrin molecules bound to the sperm head during ejaculation prevent the occurrence of the spontaneous acrosomal exocytosis along the female reproductive tract. Consequently, more competent spermatozoa with intact and functional acrosome would be available in the oviduct to participate in fertilization.  相似文献   

12.
Ejaculated mammalian sperm must complete a final maturation, termed capacitation, before they can undergo acrosomal exocytosis and fertilize an egg. In human sperm, loss of sperm sterol is an obligatory, early event in capacitation. How sterol loss leads to acrosomal responsiveness is unknown. These experiments tested the hypothesis that loss of sperm sterol affects the organization of cold detergent-resistant membrane microdomains (lipid "rafts"). The GPI-linked protein CD59, the ganglioside GM1, and the protein flotillin-2 were used as markers for lipid rafts. In uncapacitated sperm, 51% of the CD59, 41% of the GM1, and 90% of the flotillin-2 were found in the raft fraction. During capacitation, sperm lost 67% of their 3beta-hydroxysterols, and the percentages of CD59 and GM1 in the raft fraction decreased to 34% and 31%, respectively. The distribution of flotillin-2 did not change. Preventing a net loss of sperm sterol prevented the loss of CD59 and GM1 from the raft fraction. Fluorescence microscopy showed CD59 and GM1 to be distributed over the entire sperm surface. Flotillin-2 was located mainly in the posterior head and midpiece. Patching using bivalent antibodies indicated that little of the GM1 and CD59 was stably associated in the same membrane rafts. Likewise, GM1 and flotillin-2 were not associated in the same membrane rafts. In summary, lipid rafts of heterogeneous composition were identified in human sperm and the two raft components, GM1 and CD59, showed a partial sterol loss-dependent shift to the nonraft domain during capacitation.  相似文献   

13.
Ejaculated mammalian sperm must undergo a final maturation (capacitation) before they can acrosome-react and fertilize eggs. Loss of the sperm sterols, cholesterol and desmosterol, is an obligatory step in the capacitation of human sperm. Because sterols can increase the order of membrane phospholipids, it has been suggested that the importance of sterol loss is that it decreases membrane lipid order. The present study tested the hypotheses that sterol loss decreases sperm membrane lipid order during capacitation and that lipid disorder is a sufficient stimulus for capacitation. Steady-state fluorescence anisotropy of the membrane probe, 1,6-diphenyl-1,3,5-hexatriene, decreased during capacitation, indicating a decrease in lipid order. The decrease was dependent on the loss of sperm sterols, suggesting that it reflected diminished sterol-mediated phospholipid ordering. However, the lipid-fluidizing agents, benzyl alcohol and 2-(2-methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl) octanoate, did not cause sperm capacitation or overcome inhibition by cholesterol. In summary, loss of sperm sterols caused a significant decline in lipid order during capacitation; however, decreased bulk lipid order was not sufficient to trigger the subsequent events that complete capacitation.  相似文献   

14.
The involvement of reactive oxygen species (ROS) in mosquito immunity against bacteria and Plasmodium was investigated in the malaria vector Anopheles gambiae. Strains of An. gambiae with higher systemic levels of ROS survive a bacterial challenge better, whereas reduction of ROS by dietary administration of antioxidants significantly decreases survival, indicating that ROS are required to mount effective antibacterial responses. Expression of several ROS detoxification enzymes increases in the midgut and fat body after a blood meal. Furthermore, expression of several of these enzymes increases to even higher levels when mosquitoes are fed a Plasmodium berghei-infected meal, indicating that the oxidative stress after a blood meal is exacerbated by Plasmodium infection. Paradoxically, a complete lack of induction of catalase mRNA and lower catalase activity were observed in P. berghei-infected midguts. This suppression of midgut catalase expression is a specific response to ookinete midgut invasion and is expected to lead to higher local levels of hydrogen peroxide. Further reduction of catalase expression by double-stranded RNA-mediated gene silencing promoted parasite clearance by a lytic mechanism and reduced infection significantly. High mosquito mortality is often observed after P. berghei infection. Death appears to result in part from excess production of ROS, as mortality can be decreased by oral administration of uric acid, a strong antioxidant. We conclude that ROS modulate An. gambiae immunity and that the mosquito response to P. berghei involves a local reduction of detoxification of hydrogen peroxide in the midgut that contributes to limit Plasmodium infection through a lytic mechanism.  相似文献   

15.
The 125I-calmodulin gel overlay procedure was used to evaluate the effect of a heparin treatment on the calmodulin-binding proteins of bull spermatozoa. At concentrations that increase the in vitro fertilization rate of in vitro-matured oocytes, heparin induced a decrease in the binding to calmodulin (CaM) in 3 sperm proteins of 28, 30, and 49 kDa. The binding of these proteins to CaM was higher when Ca2+ was absent from the overlay procedure, and this binding was negatively correlated to the fertilization rate. These results suggest that sperm capacitation is associated with a decrease in the binding of CaM to the 28, 30, and 49 kDa sperm CaM-binding proteins. Implications of such a decrease are discussed.  相似文献   

16.
Changes in human sperm motion during capacitation in vitro   总被引:2,自引:0,他引:2  
Spermatozoa from 10 fertile donors and from 10 patients with infertile marriages were washed and centrifuged (time zero, T0), and incubated in vitro in capacitation media for 6 h (T6), or 24 h (T24). At each time individual spermatozoa were classified as being morphologically normal or abnormal, and their movement characteristics were determined using high-speed videomicrography. Zona-free hamster oocytes were added to the T24 sperm suspensions. At all times, morphologically normal spermatozoa from donors and patients swam faster and had greater rolling frequency, flagellar beat frequency and amplitude than did abnormally shaped cells. Morphologically normal spermatozoa from donors exhibited a significant change in their movement pattern at T6. This change, which resembles hyperactivation in other species, was characterized by higher values of amplitude of lateral head displacement, and lower values of linearity, beat frequency and flagellar curvature ratio. In contrast, normal spermatozoa from patients showed only a decrease in straight line velocity at T6, with no other significant changes in movement characteristics. No changes in sperm movement could be demonstrated for the abnormal cells in either group of subjects. In sperm suspensions from donors and patients examined at T24, sperm vigour declined regardless of the morphological type. Spermatozoa from all 10 donors were able to penetrate the zona-free hamster oocytes, but spermatozoa from 5 of the 10 patients failed to penetrate oocytes. Correlations between hamster oocyte penetration and indicators of sperm vigour were demonstrated only for spermatozoa of patients.  相似文献   

17.
Second messengers are involved in sperm fertilizing potential, as both motility and the acrosome reaction are influenced by cAMP. Moreover, the activity of cyclic nucleotides is implicated in the appearance of tyrosine phosphorylated sperm proteins, which is associated with capacitation in the mammalian spermatozoa. Nevertheless, the involvement of the cAMP/protein kinase A (PK-A) pathway during pig sperm capacitation may be different from that observed in other mammals. The objective of the present study was to clarify the cAMP/PK-A pathway during the capacitation of porcine spermatozoa and to evaluate this impact on the p32 sperm tyrosine phosphoprotein appearance. The presence of p32 was assessed after incubating fresh pig sperm with IBMX/db-cAMP, H-89, a PK-A inhibitor or bistyrphostin, a tyrosine kinase inhibitor, in capacitating (CM) or non-capacitating conditions (NCM) by immunoblotting SDS-extracted and separated sperm proteins using an anti-phosphotyrosine antibody. When pig spermatozoa were incubated in CM supplemented with H-89 (50 microM) or bistyrphostin (1.2 microM), capacitation decreased significantly (P < 0.001). The p32 sperm tyrosine phosphoprotein, previously shown to be associated with capacitation of porcine sperm though not necessarily an end point of this phenomenon, was not modulated by IBMX/db-cAMP (100 microM/1 mM), H-89 (50 microM) nor bistyrphostin (1.2 microM). Our results indicate, therefore, that pig sperm are regulated somewhat differently than as described for other mammals, because although the cAMP/PK-A and tyrosine kinase pathways are involved in capacitation, they do not influence the appearance of p32.  相似文献   

18.
We studied the modulation of superoxide anion (O2·?) and nitric oxide (NO·) generation during human sperm capacitation (changes needed for the acquisition of fertility). The production of NO· (diaminofluorescein-2 fluorescence assay), but not that of O2·? (luminescence assay), related to sperm capacitation was blocked by inhibitors of protein kinase C, Akt, protein tyrosine kinase, etc., but not by those of protein kinase A. Extracellular calcium (Ca2+) controlled O2·? synthesis but extra- and intracellular Ca2+ regulated NO· formation. Zinc inhibited capacitation and formation of O2·? and NO·. Zinc chelators (TPEN and EDTA) and sulfhydryl-targeted compounds (diamide and N-ethylmaleimide) stimulated capacitation and formation of O2·? and NO·; superoxide dismutase (SOD) and nitric oxide synthase inhibitor (L-NMMA) prevented these events. Diphenyliodonium (flavoenzyme inhibitor) blocked capacitation and related O2·? synthesis but promoted NO· formation, an effect canceled by SOD and L-NMMA. NADPH induced capacitation and NO· (but not O2·?) synthesis and these events were blocked by L-NMMA and not by SOD. Integration of these data on O2·? and NO· production during capacitation reinforces the concept that a complex, but flexible, network of factors is involved and probably is associated with rescue mechanisms, so that spermatozoa can achieve successful fertilization.  相似文献   

19.
Reactive oxygen species (ROS) may serve as signals coupling metabolism to other cell functions. In addition to being by-products of normal metabolism, they are generated at elevated levels under environmental stress situations. We analyzed how reactive oxygen species affect the circadian clock in the model organism Neurospora crassa. In light/dark cycles, an increase in the levels of reactive oxygen species advanced the phase of both the conidiation rhythm and the expression of the clock gene frequency. Our results indicate a dominant role of the superoxide anion in the control of the phase. Elevation of superoxide production resulted in the activation of protein phosphatase 2A, a regulator of the positive element of the circadian clock. Our data indicate that even under nonstress conditions, reactive oxygen species affect circadian timekeeping. Reduction of their basal levels results in a delay of the phase in light/dark cycles and a longer period under constant conditions. We show that under entrained conditions the phase depends on the temperature and reactive oxygen species contribute to this effect. Our results suggest that the superoxide anion is an important factor controlling the circadian oscillator and is able to reset the clock most probably by activating protein phosphatase 2A, thereby modulating the activity of the White Collar complex.  相似文献   

20.
BACKGROUND: Spermatozoa acquire active fertilizing competence only after deposition in the female tract and subsequent capacitation. Recent studies on the cellular location of major sperm phosphoproteins suggest that capacitation is associated with tyrosine phosphorylation of proteins exposed on the sperm surface. However, these changes have not yet been quantified objectively. A calcium influx seems to be required for the completion of tyrosine phosphorylation in some species; however, the exact temporal coordination between these processes is still poorly understood. METHODS: Flow cytometry was used to quantify the degree of phosphorylation of the sperm surface proteins by probing with fluorescein isothiocyanate-conjugated anti-phosphotyrosine (pY) antibody raised in mouse. Dynamic changes in other sperm parameters (calcium influx, membrane integrity, and spontaneous acrosome reaction) were assessed to analyze their temporal coordination. RESULTS:: The changes in specific phosphotyrosine (pY) fluorescence signal detected in live, nonpermeabilized boar cell suspensions were biphasic during incubation under capacitating conditions. After 120 min of incubation, the degree of pY fluorescence increased threefold, indicating the changes in proteins exposed on sperm surface. At the same time there was a gradual increase in cytosolic calcium ion levels with the maximal rate at 60 min of incubation. This rate slowed immediately before the onset of the massive rise in tyrosine phosphorylation and decreased by 90% after its completion. The integrity of plasma and acrosome membranes decreased only slowly, illustrating that the changes observed were not due to the process of spontaneous acrosome reaction. CONCLUSIONS: These data provide quantitative evidence for the appearance of tyrosine-phosphorylated proteins on the surface of live boar spermatozoa during capacitation. An exact temporal coordination exists between cytosolic calcium ion content and protein tyrosine phosphorylation under these conditions. This novel approach has the advantage of making possible a precise quantification and kinetic comparison of molecular processes in different cell subpopulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号