首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the mouse olfactory system regulated expression of a large family of G Protein-Coupled Receptors (GPCRs), the Odorant Receptors (ORs), provides each sensory neuron with a single OR identity. In the wiring of the olfactory sensory neuron projections, a complex axon sorting process ensures the segregation of >1,000 subpopulations of axons of the same OR identity into homogeneously innervated glomeruli. ORs are critical determinants in axon sorting, and their presence on olfactory axons raises the intriguing possibility that they may participate in axonal wiring through direct or indirect trans-interactions mediating adhesion or repulsion between axons. In the present work, we used a biophysical assay to test the capacity of ORs to induce adhesion of cell doublets overexpressing these receptors. We also tested the β2 Adrenergic Receptor, a non-OR GPCR known to recapitulate the functions of ORs in olfactory axon sorting. We report here the first evidence for homo- and heterotypic adhesion between cells overexpressing the ORs MOR256-17 or M71, supporting the hypothesis that ORs may contribute to olfactory axon sorting by mediating differential adhesion between axons.  相似文献   

2.
Bashaw GJ 《Neuron》2007,53(2):157-159
The convergence of olfactory sensory axons that express the same receptor onto specific glomeruli is a common organizing principle in animal olfactory systems. In this issue of Neuron, two beautiful studies in Drosophila by Lattemann et al. and Sweeney et al. show that Semaphorin repulsion regulates interactions between olfactory receptor neurons to help axons find their correct targets.  相似文献   

3.
Feinstein P  Mombaerts P 《Cell》2004,117(6):817-831
No models fully account for how odorant receptors (ORs) function in the guidance of axons of olfactory sensory neurons (OSNs) to glomeruli in the olfactory bulb. Here, we use gene targeting in mice to demonstrate that the OR amino acid sequence imparts OSN axons with an identity that allows them to coalesce into glomeruli. Replacements between the coding regions of the M71 and M72 OR genes reroute axons to their respective glomeruli. A series of M71-M72 hybrid ORs uncover a spectrum of glomerular phenotypes, leading to the concept that the identity of OSN axons is revealed depending on what other axons are present. Naturally occurring amino acid polymorphisms in other ORs also produce distinct axonal identities. These critical amino acid residues are distributed throughout the protein and reside predominantly within transmembrane domains. We propose a contextual model for axon guidance in which ORs mediate homotypic interactions between like axons.  相似文献   

4.
Odorant receptors (ORs) provide the core determinant of identity for axons of olfactory sensory neurons (OSNs) to coalesce into glomeruli in the olfactory bulb. Here, using gene targeting in mice, we examine how the OR protein determines axonal identity. An OR::GFP fusion protein is present in axons, consistent with a direct function of ORs in axon guidance. When the OR coding region is deleted, we observe OSNs that coexpress other ORs that function in odorant reception and axonal identity. It remains unclear if such coexpression is normally prevented by negative feedback on OR gene choice. A drastic reduction in OR protein level produces axonal coalescence into novel, remote glomeruli. By contrast, chimeric ORs and ORs with minor mutations perturb axon outgrowth. Strikingly, the beta2 adrenergic receptor can substitute for an OR in glomerular formation when expressed from an OR locus. Thus, ORs have not evolved a unique function in axon guidance.  相似文献   

5.
Knowledge and understanding about the selective pressures that have shaped present human genetic diversity have dramatically increased in the last few years in parallel with the availability of large genomic datasets. The release of large datasets composed of millions of SNPs across hundreds of genomes by HAPMAP, the Human Genome Diversity Panel, and other projects has led to considerable effort to detect selection signals across the nuclear genome (Coop et al., 2009, Lopez Herraez et al., 2009, Sabeti et al., 2006, Sabeti et al., 2007, Voight et al., 2006). Most of the research has focused on positive selection forces although other selective forces, such as negative selection, may have played a substantive role on the shape of our genome. Here we studied the selective strengths acting presently on the genome by making computational predictions of the pathogenicity of nonsynonymous protein mutations and interpreting the distribution of scores in terms of selection. We could show that the genetic diversity for all the major pathways is still constrained by negative selection in all 11 human populations studied. In a single exception, we observed a relaxation of negative selection acting on olfactory receptors. Since a decreased number of functioning olfactory receptors in human compared with other primates had already been shown, this suggests that the role of olfactory receptors for survival and reproductive success has decreased during human evolution. By showing that negative selection is still relaxed, the present results imply that no plateau of minimal function has yet been reached in modern humans and therefore that olfactory capability might still be decreasing. This is a first clue to present human evolution.  相似文献   

6.
The inflammasome: first line of the immune response to cell stress   总被引:18,自引:0,他引:18  
Ogura Y  Sutterwala FS  Flavell RA 《Cell》2006,126(4):659-662
The NALP3-inflammasome is a protein complex that stimulates caspase-1 activation to promote the processing and secretion of proinflammatory cytokines. Recent work indicates that the NALP3-inflammasome can be activated by endogenous "danger signals" as well as compounds associated with pathogens (Kanneganti et al., 2006; Mariathasan et al., 2006, Martinon et al., 2006; Sutterwala et al., 2006). Here, we discuss new insights into the regulation of caspase-1 activity in the inflammatory response.  相似文献   

7.
Sensory systems must map accurate representations of the external world in the brain. Although the physical senses of touch and vision build topographic representations of the spatial coordinates of the body and the field of view, the chemical sense of olfaction maps discontinuous features of chemical space, comprising an extremely large number of possible odor stimuli. In both mammals and insects, olfactory circuits are wired according to the convergence of axons from sensory neurons expressing the same odorant receptor. Synapses are organized into distinctive spherical neuropils—the olfactory glomeruli—that connect sensory input with output neurons and local modulatory interneurons. Although there is a strong conservation of form in the olfactory maps of mammals and insects, they arise using divergent mechanisms. Olfactory glomeruli provide a unique solution to the problem of mapping discontinuous chemical space onto the brain.The olfactory system detects airborne organic and inorganic chemicals that originate from plant and animal metabolites and environmental and industrial sources. Odors mediate both innate and learned behaviors such as attraction and aversion, governing decisions to eat, mate, attack or flee from aggressors and predators. A remarkable feature of the olfactory system is the extraordinary diversity of possible odor molecules that exist. Although accurate measurements can be made of the detection range of visual wavelengths or auditory frequencies in humans, there are no reliable estimates of the number of odorous molecules that exist on earth or those that can be detected by a given animal species (Gilbert 2008). Nevertheless, the number of possible odorants is thought to be high, in the range of many thousands. Beyond odor detection lies the problem of odor discrimination: how can chemicals with slightly different physical properties be discriminated and associated with distinct odor percepts?Experiments investigating the molecular logic of olfaction over the last 20 years have led to major insights into how animals solve the problem of detecting and discriminating a vast number of different odor stimuli (Axel 1995). Four organizational principles have emerged from this work. First, large numbers of distinct odorant receptor (OR) genes are dedicated to olfaction: ∼1000 in mammals and ∼100 in insects. Second, each olfactory sensory neuron (OSN) typically expresses only a single receptor out of this large repertoire. Each OR has a distinct odor ligand profile, such that there are ∼1000 types of OSNs in the mouse and ∼100 types in the typical insect. Third, OSNs expressing the same receptor extend axons that converge on the same glomerulus in the brain, forming a map of ORs in the brain. Fourth, each odor is encoded in a combinatorial manner: One odor can activate multiple ORs, and each OR can respond to multiple odors (Malnic et al. 1999; Hallem and Carlson 2006). As a result, odor information is spatially encoded in the first relay station of the brain (reviewed in Mori et al. 2006). Strikingly, these four principles along with the anatomical organization of the olfactory system are quite similar in mammals and insects, suggesting a mechanism of convergent evolution (Hildebrand and Shepherd 1997).Recent studies in two genetic model organisms, the mouse and the fly, Drosophila melanogaster, have elucidated mechanisms governing how the topographic yet discrete olfactory map is established in the brain (see Luo and Flanagan 2007 for an excellent recent review). Although mice and flies have multiple olfactory subsystems and additional classes of chemosensory receptors (reviewed in Brennan and Zufall 2006; Touhara and Vosshall 2009), this article will focus on comparative mechanisms used to map ORs and OSNs from the main olfactory epithelium in the mouse and adult chemosensory structures in the fly to glomerular targets in the brain.  相似文献   

8.
Summary In order to begin to understand how primary olfactory and vomeronasal organ (VNO) axons target specific regions of the olfactory bulb, we examined the sorting behaviour of these axons following neonatal unilateral olfactory bulbectomy. Bulbectomy induced widespread ipsilateral death of the primary olfactory and VNO neurons. After 4 weeks, many new sensory axons had re-grown into the cranial cavity and established a prominent plexus with evidence of dense tufts that were similar in gross appearance to glomeruli. Axons expressing the cell adhesion molecule OCAM, which normally innervate the ventrolateral and rostral halves of the main and accessory olfactory bulbs, respectively, sorted out and segregated from those axons not expressing this molecule within the plexus. In addition, VNO axons formed large discrete bundles that segregated from main olfactory axons within the plexus. Thus, VNO and primary olfactory axons as well as discrete subpopulations of both are able to sort out and remain segregated in the absence of the olfactory bulb. Sorting and convergence of axons therefore occur independently of the olfactory bulb and are probably attributable either to inherent properties of the axons themselves or to interactions between the axons and accompanying glial ensheathing cells.  相似文献   

9.
Choi GB  Anderson DJ 《Cell》2005,123(4):550-553
The standard view that the control of mating behavior by pheromones is mediated by the vomeronasal organ, and not by the main olfactory epithelium, has recently been called into question. In this issue of Cell, two independent studies (Boehm et al., 2005; Yoon et al., 2005) examine the inputs from each of these olfactory pathways to a population of neurons that plays a central role in mating behavior.  相似文献   

10.
11.
Surrounded by Slit--how forebrain commissural axons can be led astray.   总被引:3,自引:0,他引:3  
Linda J Richards 《Neuron》2002,33(2):153-155
In Drosophila, Slit acts as a barrier preventing roundabout expressing axons from entering the midline and sorting contralaterally from ipsilaterally projecting axons. Hutson and Chien, Plump et al., and Bagri et al. (all in this issue of Neuron) use Slit knockout mice and zebrafish astray/Robo2 mutants to show that in vertebrates, Robo/Slit function to channel axons into specific pathways and determine where decussation points occur. Ipsilaterally and contralaterally projected axons are equally affected.  相似文献   

12.
Savarese F  Grosschedl R 《Cell》2006,126(2):248-250
In this issue of Cell, Axel and colleagues (Lomvardas et al., 2006) report that a single enhancer of an odorant receptor (OR) gene cluster interacts with multiple OR gene promoters on different chromosomes. This study suggests a mechanism that allows olfactory sensory neurons to choose randomly and express only one out of more than 1000 OR genes.  相似文献   

13.
Imai T  Sakano H 《Neuron》2008,58(4):465-467
In mammals, olfactory sensory neurons project their axons exclusively to the ipsilateral olfactory bulb. It remains unclear how odor information interacts between the two hemispheres of the brain. In this issue of Neuron, Yan et al. describe the precise interbulbar connection through the anterior olfactory nucleus pars externa (AONpE), which links contralateral isotypic olfactory columns.  相似文献   

14.
Ranganathan R  Buck LB 《Neuron》2002,35(4):599-600
Mammalian olfactory sensory neurons that express a particular odorant receptor (OR) project axons to the same few glomeruli in the olfactory bulb. In this issue of Neuron, Vassalli et al. use OR minigenes that coexpress histochemical markers and show that the determinants in the sensory neurons required to generate the stereotyped olfactory bulb map are the same as those needed for appropriate expression of the OR.  相似文献   

15.
A high-resolution cryo-EM reconstruction of a ribosome-bound dicistrovirus IRES (Schüler et al., 2006) and the crystal structure of its ribosome binding domain (Pfingsten et al., 2006) provide new insights into an exceptional eukaryotic translation mechanism.  相似文献   

16.
Olfactory receptors (ORs) are expressed in sensory neurons of the nasal epithelium, where they are supposed to be involved in the recognition of suitable odorous compounds and in the guidance of outgrowing axons towards the appropriate glomeruli in the olfactory bulb. During development, some olfactory receptor subtypes have also been found in non-sensory tissues, including the cribriform mesenchyme between the prospective olfactory epithelium and the developing telencephalon, but it is elusive if this is a typical phenomenon for ORs. Monitoring the onset and time course of expression for several receptor subtypes revealed that 'extraepithelial' expression of ORs occurs very early and transiently, in particular between embryonic stages E10.25 and E14.0. In later stages, a progressive loss of receptor expressing cells was observed. Molecular phenotyping demonstrated that the receptor expressing cells in the cribriform mesenchyme co-express key elements, including Galpha(olf), ACIII and OMP, characteristic for olfactory neurons in the nasal epithelium. Studies on transgenic OMP/GFP-mice showed that 'extraepithelial' OMP/GFP-positive cells are located in close vicinity to axon bundles projecting from the nasal epithelium to the presumptive olfactory bulb. Moreover, these cells are primarily located where axons fasciculate and change direction towards the anterior part of the forebrain.  相似文献   

17.
The life-long addition of new neurons has been documented in many regions of the vertebrate and invertebrate brain, including the hippocampus of mammals (Altman and Das, 1965; Eriksson et al., 1998; Jacobs et al., 2000), song control nuclei of birds (Alvarez-Buylla et al., 1990), and olfactory pathway of rodents (Lois and Alvarez-Buylla, 1994), insects (Cayre et al., 1996) and crustaceans (Harzsch and Dawirs, 1996; Sandeman et al., 1998; Harzsch et al., 1999; Schmidt, 2001). The possibility of persistent neurogenesis in the neocortex of primates is also being widely discussed (Gould et al., 1999; Kornack and Rakic, 2001). In these systems, an effort is underway to understand the regulatory mechanisms that control the timing and rate of neurogenesis. Hormonal cycles (Rasika et al., 1994; Harrison et al., 2001), serotonin (Gould, 1999; Brezun and Daszuta, 2000; Beltz et al., 2001), physical activity (Van Praag et al., 1999) and living conditions (Kemperman and Gage, 1999; Sandeman and Sandeman, 2000) influence the rate of neuronal proliferation and survival in a variety of organisms, suggesting that mechanisms controlling life-long neurogenesis are conserved across a range of vertebrate and invertebrate species. The present article extends these findings by demonstrating circadian control of neurogenesis. Data show a diurnal rhythm of neurogenesis among the olfactory projection neurons in the crustacean brain, with peak proliferation during the hours surrounding dusk, the most active period for lobsters. These data raise the possibility that light-controlled rhythms are a primary regulator of neuronal proliferation, and that previously-demonstrated hormonal and activity-driven influences over neurogenesis may be secondary events in a complex circadian control pathway.  相似文献   

18.
Phylogenetic analyses based on 16S rRNA gene sequences showed that a bacterial isolate, designated JC2678(T), represents a distinct phyletic line within the suprageneric monophyletic clade containing the genera Nonlabens, Persicivirga, Stenothermobacter and Sandarakinotalea. The polyphasic data presented in this study demonstrated that the members belonging to the Nonlabens-like clade overall constitute a single genus. Therefore, it is proposed to transfer the members of genera Persicivirga O'Sullivan et al. 2006, Stenothermobacter Lau et al. 2006 and Sandarakinotalea Khan et al. 2006 to the genus Nonlabens Lau et al. 2005. Thus, P. dokdonensis (Yoon et al. 2006) Nedashkovskaya et al. 2009, P. ulvanivorans Barbeyron et al. 2010, P. xylanidelens O'Sullivan et al. 2006, Sandarakinotalea sediminis Khan et al. 2006 and Stenothermobacter spongiae Lau et al. 2006 should be transferred to Nonlabens dokdonensis comb. nov., Nonlabens ulvanivorans comb. nov., Nonlabens xylanidelens comb. nov., Nonlabens sediminis comb. nov. and Nonlabens spongiae comb. nov., respectively. In addition, strain JC2678(T) (=KACC 14155(T)=JCM 17109(T)) is proposed to constitute a novel species belonging to the genus Nonlabens with the name of Nonlabens agnitus sp. nov.  相似文献   

19.
Stark J  Andl T  Millar SE 《Cell》2007,128(1):17-20
Hair follicles in the skin have a characteristic spacing and orientation. Two recent papers (Sick et al., 2006 and Wang et al., 2006) report the use of contrasting mathematical models and experimental manipulations to gain insight into the mechanisms underlying patterns of hair-follicle distribution and orientation.  相似文献   

20.
Quantification of random mutations in the mitochondrial genome   总被引:1,自引:0,他引:1  
Mitochondrial DNA (mtDNA) mutations contribute to the pathology of a number of age-related disorders, including Parkinson disease [A. Bender et al., Nat. Genet. 38 (2006) 515,Y. Kraytsberg et al., Nat. Genet. 38 (2006) 518], muscle-wasting [J. Wanagat, Z. Cao, P. Pathare, J.M. Aiken, FASEB J. 15 (2001) 322], and the metastatic potential of cancers [K. Ishikawa et al., Science 320 (2008) 661]. The impact of mitochondrial DNA mutations on a wide variety of human diseases has made it increasingly important to understand the mechanisms that drive mitochondrial mutagenesis. In order to provide new insight into the etiology and natural history of mtDNA mutations, we have developed an assay that can detect mitochondrial mutations in a variety of tissues and experimental settings [M. Vermulst et al., Nat. Genet. 40 (2008) 4, M. Vermulst et al., Nat. Genet. 39 (2007) 540]. This methodology, termed the Random Mutation Capture assay, relies on single-molecule amplification to detect rare mutations among millions of wild-type bases [J.H. Bielas, L.A. Loeb, Nat. Methods 2 (2005) 285], and can be used to analyze mitochondrial mutagenesis to a single base pair level in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号