首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mole activity in woodlands, fens and other habitats   总被引:2,自引:0,他引:2  
Monks Wood, a deciduous wood of 155 hectares on clay soil, has an estimated population of 400 moles. There is an anastomosing system of permanent burrows, and when a mole is trapped its area of burrow is soon occupied by another animal. Little new digging occurs, except in winter, after frost has driven the soil fauna deeper into the ground. The burrows usually act as pit-fall traps for the food. Young animals migrating in summer may live more superficially, in tunnels in moss and grass, but survivers usually move into a permanent tunnel system by autumn.
Woodwalton Fen has an easily worked peat soil, and few earthworms. Here moles burrow at all seasons, presumably needing an extensive burrow system to catch sufficient food. In times of flood, the moles leave submerging ground but return very soon after the water subsides. They probably swim across flooded areas but iis yet we do not know if the same animals return after floods to the same burrows.
Moles are not good indicators of soil fertility, particularly as many mole heaps are made by few moles in poor soil, and fewmew heaps may appear in good soil with permanent burrows. We do not understand why there are so few moles in some apparently suitable pasture, with high worm populations, or how others manage to obtain sutficient food in infertile areas.  相似文献   

2.
1. The pleopods of C. californiensis, a potential site for extrabranchial oxygen exchange, do not contribute significantly to oxygen consumption. 2. C. californiensis has a gill surface area of 4.13 +/- 0.72 cm2/g wet body weight, the lowest value yet reported for a totally aquatic crustacean. 3. C. californiensis, when placed in simulated burrow conditions, regulates the PO2 very loosely in its immediate microhabitat, using its pleopods. 4. Field studies of pH and PO2 values in burrows of C. californiensis indicate that animal movement may play a large part in water exchange between the surface and burrow. 5. Activity studies suggest that oxygen is not critical to C. californiensis on a short term basis. Perception of oxygen after long deprivation may signal the possibility of renewed feeding and activity at the surface of its burrow.  相似文献   

3.
Mudshrimps are important soft shore bioturbators but research on the ecology of tropical species has received less attention when compared with their temperate counterparts. The mudshrimp Austinogebia edulis is common on Asian soft shores and lives in burrows for its entire adult life. Epoxy resin casting of A. edulis burrows showed that they were approximately Y-shaped, with an upper U-part and the lower central shaft part. The burrows had two openings extending to the surface; the mean distance between the two openings was 11.0 cm in Hong Kong and 26.4 cm in Taiwan. Openings of the burrows had small chimneys. The tunnels of the burrows were circular, narrow and with a smooth surface (tunnel diameter corresponded to shrimp carapace width). Each burrow was inhabited by a single shrimp and burrows were inter-connected during the mating and reproductive season. Each burrow had four to 12 spherical chambers, which were free of detritus. The chambers were thought to be used for suspension feeding, current generation and as turning points. The depth of burrows was up to 1.1 m. Multivariate analysis on various burrow parameters showed that burrows collected on a mud flat in Taiwan were deeper, had a wider distance between the openings and a larger volume than burrows collected from a sandy shore in Hong Kong, suggesting that burrow architecture is variable between shore types. Burrow architecture, however, did not vary between tidal levels, seasons and shrimp density on the shores in Hong Kong, indicating that the burrows were quite stable within the substratum and were not affected by environmental and biological factors.  相似文献   

4.
Spawning burrow selection by the longfinned goby Valenciennea longipinnis was studied in the near-shore moat on coral reefs, Okinawa, Japan. The gobies make several burrows within their home range, and spawn in one of them. To examine the factors important for spawning burrow selection three characteristics were investigated: current strength, burrow length and effect of underground water on the burrow. Among the burrows, pairs tended to spawn in a larger burrow irrespective of their body sizes. Most of the other non-spawning burrows were too small for a pair to stay together, because hard substrata may prevent the fish from excavating and shaping the burrow as they like. Moreover, pairs preferred to spawn in burrows where the underground water was oozing out, probably because the male's parental burden will decrease due to the higher dissolved oxygen concentration in such burrows. Although current strength may affect a water-exchange in a V. longipinnis burrow in relation to water-exchange function of a mound, it did not affect the spawning burrow selection because of the smaller velocity difference among the burrows relative to the daily fluctuation of tidal current.  相似文献   

5.
Despite an important role of subterranean rodents as ecosystem engineers, their belowground mobility is poorly documented. It is supposed that their underground burrow systems, once established, are relatively stable because of high-energy costs of digging. We chose the silvery mole-rat, Heliophobius argenteocinereus (Bathyergidae, Rodentia) from mesic Afrotropics as a representative of solitary subterranean rodents to investigate how, and how fast these rodents process their established burrow systems. We combined radio-tracking of individual animals with subsequent mapping of their burrow systems, and we developed a new method for assessing the rate of burrowing. Mole-rats continuously rebuilt their burrow systems; they excavated approx. 0.7 m of new tunnels per day and backfilled on average 64% of all tunnels. On average, every 32 d they established a new nest. They often completely backfilled newly excavated peripheral burrows, while other parts of their burrow systems were more permanent. Their home-ranges were dynamic and continuously shifted in space. Burrow system processing continued even in the advanced dry season, when soil is difficult to work.  相似文献   

6.
Many hoarding rodents use burrows not only for dwelling and protection from natural enemies, but also for food storage. However, little is known how burrows used by scatter-hoarding animals influence their foraging behaviors. In addition, handling time for a given food item has a fundamental impact on hoarding strategies of these hoarding animals: food items with longer handling time are more likely to be hoarded due to increasing predation risk because the animals spend more time outside their burrows if they consumed such food. By providing with two types of artificial burrows (aboveground vs. underground) and two types of food items (i.e. seeds) with contrasting handling times, we investigated how burrow condition and handling time co-influence hoarding strategies of a key scatter-hoarding rodent, Edward's long-tailed rat (Leopoldamys edwardsi) in large enclosures in southwest China. We found that only a few animals larder-hoarded fewer seeds when only aboveground burrows were available, while over 80% of the animals preferred to use the underground burrows and hoard significantly more seeds in the burrows when both aboveground and underground burrows were provided simultaneously. We also found that seed handling time significantly affected hoarding strategies of the animals: they consumed and/or scatter-hoarded more Camellia oleifera seeds with shorter handling time outside the burrow, but consumed and larder-hoarded more Lithocarpus harlandii seeds with longer handling time in underground burrows. Our study indicates that both burrow types and seed handling time have important impacts on hoarding strategies of scatter-hoarding animals.  相似文献   

7.
Many animals use chemical signals for communication between conspecifics and for territory marking. The pygmy bluetongue lizard is normally solitary, focussing activity around the entrance of its burrow, from where it ambushes prey, and rarely contacts other individuals. In this paper we examined whether lizards in laboratory experiments alter their behaviour in the presence of scats from conspecifics. In the first experiment, when lizards were offered a choice of two vacant burrows with or without a scat close to the entrance, they tongue flicked more often at the burrow entrance when the scat was present, and more often chose to occupy the burrow with the scat. An interpretation is that lizards use scat signals to recognise burrows that may be suitable because they have previously been occupied by a conspecific, but that they approach those burrows cautiously in case a resident is still present and likely to resist a takeover. Scats from male lizards were inspected (by both sexes) for longer than scats of female lizards. In the second experiment, when resident lizards were presented with scats outside of their burrows, they inspected and tongue flicked at those scats more often if the scat came from a male than a female lizard, but there was no definitive evidence from our experiments that lizards differentiated in their response to scats from lizards that were found close to or far from the test lizard. The results were consistent with a communication system in which lizards use scats to advertise their presence, independent of any direct contact.  相似文献   

8.
Tiger beetle larvae excavate and live in underground burrows, whose openings they sometimes plug with soil. This study documents the burrow plugging behavior of the tiger beetle, Cosmodela batesi (Fleutiaux), in the field. We also tested the function of burrow plugs in the laboratory. In the field, C. batesi more frequently made a plug when it rained. Most larvae made plugs inside their burrows (rather than at the soil surface), and the use of an endoscope was necessary to detect these sub-surface plugs. In the laboratory, flooding was simulated by artificially introducing water into specially-made arenas. Water filled the entire burrow when there was no plug, whereas plugged burrows maintained air chambers inside. When a plug was broken with a wire, burrows filled up with water. The burrowing and plugging behavior described in this study is likely an important adaptation of C. batesi to its habitat.  相似文献   

9.
Crawfish frogs (Lithobates areolatus) have experienced declines across large portions of their former range. These declines are out of proportion to syntopic wetland-breeding amphibian species, suggesting losses are resulting from unfavorable aspects of non-breeding upland habitat. Crawfish frogs get their common name from their affinity for crayfish burrows, although the strength of this relationship has never been formally assessed. We used radiotelemetry to address 4 questions related to upland burrow dwelling in crawfish frogs: 1) what burrow types are used and how do they function to affect crawfish frog survivorship; 2) what are the physical characteristics and habitat associations of crawfish frog burrows; 3) what are the home range sizes of crawfish frogs when burrow dwelling; and 4) where are crawfish frog burrows situated with respect to breeding wetlands? We tracked crawfish frogs to 34 burrows, discovered another 7 occupied burrows, and therefore report on 41 burrows. Crawfish frogs exclusively occupied crayfish burrows as primary burrows, which they inhabited for an average of 10.5 months of the year. With one exception, crawfish frogs also used crayfish burrows as secondary burrows—temporary retreats occupied while exhibiting breeding migrations or ranging forays. Burrows were exclusively located in grassland habitats, although crawfish frogs migrated through narrow woodlands and across gravel roads to reach distant grassland primary burrow sites. Home range estimates while inhabiting burrows were 0.05 m2 (the area of the burrow entrance plus the associated feeding platform) or 0.01 m3 (the estimated volume of their burrow). Crawfish frog burrows were located at distances up to 1,020 m from their breeding wetlands. To protect crawfish frog populations, we recommend a buffer (core habitat plus terrestrial buffer) of at least 1.2 km around each breeding wetland. Within this buffer, at least 3 critical habitat elements must be present: 1) extensive grasslands maintained by prescribed burning and/or logging, 2) an adequate number of upland crayfish burrows, and 3) no soil disturbance of the sort that would destroy crayfish burrow integrity. © 2012 The Wildlife Society.  相似文献   

10.
Summary Species of the amphipod genus Paraceradocus found near the Antarctic Peninsula were observed in aquaria. The animals live under stones in burrows in sediment which they excavate with their gnathopods. During burrowing the animal regularly turns backwards in a somersault-like movement. Paraceradocus feeds on detritus, which is manipulated by the gnathopods and the antennes. The gnathopods are also used for grooming. A dense brush of setae at the medial surface of the carpi of the gnathopods I is used to clean off fine particles from the antennes. These particles are transferred to the maxillipeds and are ingested. The rear appendages are mainly cleaned by the gnathopods II. Young animals sitting between the gnathopods of the adult participate in feeding.  相似文献   

11.
The ghost crab Ocypode ceratophthalma (Pallas) creates burrows of variety shapes at different ages. Juveniles (mean carapace length 11 mm) produced shallow J-shaped burrows, which incline vertically into the substratum (mean depth 160 mm). Larger crabs (17–25 mm carapace length) have Y-shaped and spiral burrows (mean depth 361 mm). These Y-shaped burrows have a primary arm, which extends to the surface forming the opening, and a secondary arm which terminates in a blind spherical ending. The two arms join in a single shaft and end with a chamber at the base. The secondary arms and chambers are believed to be used for mating or as a refuge from predation. The spiral burrows have spiral single channel ending in a chamber. Older crabs (mean carapace length 32.6 mm) had simple, straight single tube burrows, which inclined into the substratum at mean of 73° and had a mean depth of 320 mm. During summer daytime periods, the burrows shelter the crabs from heat and desiccation stress. The sand surface temperature at the burrow opening was ~48 °C but temperatures inside the burrows can drop to 32 °C at a depth of 250 mm. Variation in the burrow architecture with crab age appears to be related to the crab’s behaviour. Juvenile crabs have smaller gill areas and move out of the burrows regularly to renew their respiratory water and, as a result, they do not need a deep burrow. Larger crabs, in contrast, can tolerate prolonged periods without renewing their respiratory water and therefore create deeper and more complex burrows for mating and refuges.  相似文献   

12.
Many organizations have installed artificial burrows to help bolster local Burrowing Owl (Athene cunicularia) populations. However, occupancy probability and reproductive success in artificial burrows varies within and among burrow installations. We evaluated the possibility that depth below ground might explain differences in occupancy probability and reproductive success by affecting the temperature of artificial burrows. We measured burrow temperatures from March to July 2010 in 27 artificial burrows in southern California that were buried 15–76 cm below the surface (measured between the surface and the top of the burrow chamber). Burrow depth was one of several characteristics that affected burrow temperature. Burrow temperature decreased by 0.03°C per cm of soil on top of the burrow. The percentage of time that artificial burrows provided a thermal refuge from above‐ground temperature decreased with burrow depth and ranged between 50% and 58% among burrows. The percentage of time that burrow temperature was optimal for incubating females also decreased with burrow depth and ranged between 27% and 100% among burrows. However, the percentage of time that burrow temperature was optimal for unattended eggs increased with burrow depth and ranged between 11% and 95% among burrows. We found no effect of burrow depth on reproductive success across 21 nesting attempts. However, occupancy probability had a non‐linear relationship with burrow depth. The shallowest burrows (15 cm) had a moderate probability of being occupied (0.46), burrows between 28 and 40 cm had the highest probability of being occupied (>0.80), and burrows >53 cm had the lowest probability of being occupied (<0.43). Burrowing Owls may prefer burrows at moderate depths because these burrows provide a thermal refuge from above‐ground temperatures, and are often cool enough to allow females to leave eggs unattended before the onset of full‐time incubation, but not too cool for incubating females that spend most of their time in the burrow during incubation. Our results suggest that depth is an important consideration when installing artificial burrows for Burrowing Owls. However, additional study is needed to determine the possible effects of burrow depth on reproductive success and on possible tradeoffs between the effects of burrow depth on optimal temperature and other factors, such as minimizing the risk of nest predation.  相似文献   

13.
C. Endo 《Journal of Zoology》2007,273(4):414-420
The underground life of the oriental mole cricket Gryllotalpa orientalis has been investigated by studying the structure of its burrows under different environmental situations and in different seasons. The different uses of different burrow types and their advantages and disadvantages have been examined. The total length, number of tunnels and combination of burrow types varied from a simple tunnel to a more complex one with branches at various angles to the surface, burrow types being divided roughly into shallow horizontal or deep vertical ones. In horizontal burrows, the branching structure was well developed in various directions. It is notable that the vertical burrows of G. orientalis were occupied by only one individual. Both vertical and horizontal burrows were used for foraging: vertical burrows for plants with subterranean stems and horizontal burrows for creeping plants. Vertical burrows were also used for hiding from predators, resting, moulting and overwintering, whereas horizontal burrows were used for escaping from predators and as mating routes. Egg chambers were constructed beside horizontal burrows, and calling burrows were constructed as part of horizontal burrows. Based on their current requirements, mole crickets continuously modify their burrow structures or change burrowing sites.  相似文献   

14.
By combining field behavior and microclimate measurements with biophysical models, I assessed the value of underground burrows as thermal refuge for desert tortoises (Gopherus agassizii) and their additional advantage for water conservation. Between 1000–1200 h, humidity was significantly higher and temperature and predicted evaporative water loss (EWL) lower inside burrows than on the surface. Greater burrow length and smaller entrances were correlated with greater burrow humidity. Furthermore, the range of variation in humidity, temperature and EWL over 24 h was greater on the surface than inside burrows. Thus, surface conditions would be more favorable during certain times of day.  相似文献   

15.
The mud-crab Helice tridens (De Haan) influences the cycling of matter in salt-marsh ecosystems through its burrowing activity. If the crabs occupy and stay in their burrows for a short time, their burrowing activity will be great, since they will continuously construct new burrows. Therefore, investigation of the relation between the crabs and their burrows is considered to be important. In the present study, the relation between pipes as a form of artificial burrow and their occupation by the crab was analyzed. A close relationship was recognized between the diameter of the pipe opening and the carapace width of the crab which occupied the pipe, while pipes with a length shorter than the depth of the crab burrows were hardly occupied. These results indicate that the diameter and length of an artificial burrow affects the likelihood of its occupation by this species of crab. The length of the crab's stay in this type of artificial burrow was generally 1 day. This result may be related to the field observation that newly made burrows frequently collapse due to water current occurring through tidal action after the crabs have left.  相似文献   

16.
采用直接观察法测定了高原鼠兔地面、洞道活动时间及进、出洞频率。结果表明,在07:00-18:00,雄性和雌性高原鼠兔平均地面活动时间分别占总活动时间比例的87.09%和85.22%。地面活动时间具有明显的季节性,但两性个体间无显著的差异。繁殖早期,成年雌体地面活动时问显著高于繁殖后期,第2胎幼体地面活动时间显著低于第1胎幼体。不同年龄和性别的高原鼠兔进洞频率存在极显著差异,5月成年雌体进洞频率最高,而成年雄体在4月进洞频率最低。研究结果验证了捕食风险可制约鼠兔属动物领域活动时间分配,高风险环境能增加其利用洞道的时间及频率的特定假设。  相似文献   

17.
Parastizopus armaticeps (Coleoptera: Tenebrionidae), a nocturnal fossorial detritivore inhabiting southern Kalahari dunes, aggregates in burrows during the day. Group size increases during drought but 25% of beetles are still found alone or in pairs. During drought, beetles from large groups leave burrows after sunset synchronously and carlier than pairs and single animals and earlier than beetles of any group size after rain. Detritus from the beetles' major foodplant is scarce and food competition high. Beetles emerging early preferentially select and carry high-quality transportable items into burrows to eat (forage); late-emerging ones feed on the low-quality large twigs on the surface. Foraging is shown to be a strategy to secure food items against surface competitors, not one to reduce body water loss during surface exposure. The costs and benefits of group vs. solitary lifestyles and alternate hypotheses for early and synchronous emergence were tested experimentally. Grouped beetles had lower body water loss rates but, due to competition with burrow mates, higher feeding costs than single ones. It is hunger that advances and thus synchronizes emergence time, not social facilitation. Field data support a model predicting that, for maximal benefits, beetles should alternate between solitary and group life at optimal time intervals.  相似文献   

18.
Re‐occupation of existing nesting burrows in the European bee‐eater Merops apiaster has only rarely – and if so mostly anecdotically – been documented in the literature record, although such behavior would substantially save time and energy. In this study, we quantify burrow re‐occupation in a German colony over a period of eleven years and identify ecological variables determining reuse probability. Of 179 recorded broods, 54% took place in a reused burrow and the overall probability that one of 75 individually recognized burrows would be reused in a given subsequent year was estimated as 26.4%. This indicates that between‐year burrow reuse is a common behavior in the study colony which contrasts with findings from studies in other colonies. Furthermore, burrow re‐occupation probability declined highly significantly with increasing age of the breeding wall. Statistical separation of within‐ and between‐burrow effects of the age of the breeding wall revealed that a decline in re‐occupation probability with individual burrow age was responsible for this and not a selective disappearance of burrows with high re‐occupation probability over time. Limited duty cycles of individual burrows may be caused by accumulating detritus or decreasing stability with increasing burrow age. Alternatively, burrow fidelity may presuppose pair fidelity which may also explain the observed restricted burrow reuse duty cycles. A consequent next step would be to extend our within‐colony approach to other colonies and compare the ecological circumstances under which bee‐eaters reuse breeding burrows.  相似文献   

19.
The development of dispersion in relation to burrows of young rabbits, Oryctolagus cuniculus L., was studied in a sand dune habitat between May and September 1984–1985. Generally, young rabbits did not show a close association with their original burrow. From the first week of life on the surface they used different burrows as well as the original one. No significant age-related changes in the mean distance from different kinds of burrows were observed. The mean distance from the nearest burrow remained always under 3 m, but this distance may have been due largely to the high density of burrows. The apparent freedom of movements of young rabbits around different burrows may be related to the social system of the adults in a sand dune habitat.  相似文献   

20.
To fully comprehend chytridiomycosis, the amphibian disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), it is essential to understand how Bd affects amphibians throughout their remarkable range of life histories. Crawfish Frogs (Lithobates areolatus) are a typical North American pond-breeding species that forms explosive spring breeding aggregations in seasonal and semipermanent wetlands. But unlike most species, when not breeding Crawfish Frogs usually live singly--in nearly total isolation from conspecifics--and obligately in burrows dug by crayfish. Crayfish burrows penetrate the water table, and therefore offer Crawfish Frogs a second, permanent aquatic habitat when not breeding. Over the course of two years we sampled for the presence of Bd in Crawfish Frog adults. Sampling was conducted seasonally, as animals moved from post-winter emergence through breeding migrations, then back into upland burrow habitats. During our study, 53% of Crawfish Frog breeding adults tested positive for Bd in at least one sample; 27% entered breeding wetlands Bd positive; 46% exited wetlands Bd positive. Five emigrating Crawfish Frogs (12%) developed chytridiomycosis and died. In contrast, all 25 adult frogs sampled while occupying upland crayfish burrows during the summer tested Bd negative. One percent of postmetamorphic juveniles sampled were Bd positive. Zoospore equivalents/swab ranged from 0.8 to 24,436; five out of eight frogs with zoospore equivalents near or >10,000 are known to have died. In summary, Bd infection rates in Crawfish Frog populations ratchet up from near zero during the summer to over 25% following overwintering; rates then nearly double again during and just after breeding--when mortality occurs--before the infection wanes during the summer. Bd-negative postmetamorphic juveniles may not be exposed again to this pathogen until they take up residence in crayfish burrows, or until their first breeding, some years later.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号