首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
26-Norbrassinolide, identified as a metabolite of brassinolide in cultured cells of the liverwort, Marchantia polymorpha, as well as 26-norcastasterone and 26-nor-6-deoxocastasterone were synthesized. Synthesis of these new brassinosteroids was conducted by employing the orthoester Claisen rearrangement and asymmetric dihydroxylation as key reactions. The modified rice lamina inclination test indicated that these three 26-norbrassinosteroids were less active than their corresponding C28 brassinosteroids. Growth-promoting activities were also examined by using the brassinosteroid-deficient, dwarf mutant lkb of garden pea (Pisum sativum L.). In this assay, 26-norbrassinolide was as effective as brassinolide and 26-norcastasterone was more effective than castasterone although 26-nor-6-deoxocastasterone was much less effective than 6-deoxocastasterone. Therefore, removal of C-26 of brassinosteroids does not necessarily reduce the biological activity. The role of C-26 removal in Marchantia cells remains unclear.  相似文献   

2.
In Saccharomyces cerevisiae, the C-24 sterol methyltransferase (Erg6p) converts zymosterol to fecosterol, an enzymatic step following C-4 demethylation of 4,4-dimethylzymosterol. Our previous study showed that an endoplasmic reticulum (ER) transmembrane protein, Erg28p, functions as a scaffold to tether the C-4 demethylation enzymatic complex (Erg25p-Erg26p-Erg27p) to the ER. To determine whether Erg28p also interacts with other ergosterol biosynthetic proteins, we compared protein levels of Erg3p, Erg6p, Erg7p, Erg11p and Erg25p in three pairs of erg28 and ERG28 strains. In erg28 strains, the Erg6p level in the ER fraction was decreased by about 50% relative to the wild-type strain, while ER protein levels of the four other ergosterol proteins showed no significant differences. Co-immunoprecipitation experiments, using an erg28 strain transformed with the epitope-tagged plasmid pERG28-HA and proteins detected with anti-HA and anti-Erg6p antibodies, indicated that Erg6p and Erg28p reciprocally co-immunoprecipitate. Further, the split ubiquitin yeast membrane two-hybrid system designed to detect protein interactions between membrane bound proteins also indicated an Erg28p-Erg6p interaction when pERG6-Cub was used as the bait and pERG28-NubG was used as the prey. We conclude that Erg28p may not only anchor the C-4 demethylation enzyme complex to the ER but also acts as a protein bridge to the Erg6p enzyme required for the next ergosterol biosynthetic step.  相似文献   

3.
Endogenous brassinosteroids (BRs) in tomato (Lycopersicon esculentum) seedlings are known to be composed of C27- and C28-BRs. The biosynthetic pathways of C27-BRs were examined using a cell-free enzyme solution prepared from tomato seedlings that yielded the biosynthetic sequences cholesterol --> cholestanol and 6-deoxo-28-norteasterone <--> 6-deoxo-28-nor-3-dehydroteasterone <--> 6-deoxo-28-nortyphasterol --> 6-deoxo-28-norcastasterone --> 28-norcastasterone (28-norCS). Arabidopsis CYP85A1 that was heterologously expressed in yeast mediated the conversion of 6-deoxo-28-norCS to 28-norCS. The same reaction was catalyzed by an enzyme solution from wild-type tomato but not by an extract derived from a tomato dwarf mutant with a defect in CYP85. Furthermore, exogenously applied 28-norCS restored the abnormal growth of the dwarf mutant. These findings indicate that the C-6 oxidation of 6-deoxo-28-norCS to 28-norCS in tomato seedlings is catalyzed by CYP85, just as in the conversion of 6-deoxoCS to CS. Additionally, the cell-free solution also catalyzed the C-24 methylation of 28-norCS to CS in the presence of NADPH and S-adenosylmethionine (SAM), a reaction that was clearly retarded in the absence of NADPH and SAM. Thus it seems that C27-BRs, in addition to C28-BRs, are important in the production of more active C28-BRs and CS, where a SAM-dependent sterol methyltransferase appears to biosynthetically connect C27-BRs to C28-BRs. Moreover, the tomato cell-free solution converted CS to 26-norCS and [2H6]CS to [2H3]28-norCS, suggesting that C-28 demethylation is an artifact due to an isotope effect. Although previous feeding experiments employing [2H6]CS suggested that 28-norCS was synthesized from CS in certain plant species, this is not supported in planta. Altogether, this study demonstrated for the first time, to our knowledge, that 28-norCS is not synthesized from CS but from cholesterol. In addition, CS and [2H6]CS were not converted into BL and [2H6]BL, respectively, confirming an earlier finding that the active BR in tomato seedlings is not BL but CS. In conclusion, the biosynthesis of 28-norBRs appears to play a physiologically important role in maintaining homeostatic levels of CS in tomato seedlings.  相似文献   

4.
The bioactivity of 25-hydroxybrassinolide, (25S)- and (25R)-26-hydroxybrassinolide, (25S)- and (25R)-25,26-dihydroxybrassinolide, and of (25R)-25,26-epoxybrassinolide was tested in the rice leaf lamina inclination assay. The 25- and (25S)-26-hydroxy derivatives are known metabolites of the naturally-occurring phytohormone brassinolide, whereas the other compounds are novel, but closely related, congeners. When tested alone, all showed either no activity or only weak activity at relatively high doses. When coapplied with indole-3-acetic acid (IAA), an auxin that synergizes the effects of brassinosteroids, enhanced bioactivity was observed for each compound. However, even when applied together with IAA, none of the compounds proved more bioactive than brassinolide with or without IAA. We conclude from these results that enzymatic hydroxylation of endogenous brassinolide at C-25 and/or C-26 does not enhance brassinosteroid activity, and so does not comprise an activation pathway in brassinolide biosynthesis. Instead, these hydroxylations result in modest to appreciable metabolic deactivation.  相似文献   

5.
In our previous study, we indicated for the first time that C-28 hydroxylation plays a significant role in the metabolism of 1alpha, 25-dihydroxyvitamin D(2) [1alpha,25(OH)(2)D(2)] by identifying 1alpha,24(S),25,28-tetrahydroxyvitamin D(2) [1alpha,24(S),25, 28(OH)(4)D(2)] as a major renal metabolite of 1alpha,25(OH)(2)D(2) [G. S. Reddy and K-Y. Tserng Biochemistry 25, 5328-5336, 1986]. The present study was performed to establish the physiological significance of C-28 hydroxylation in the metabolism of 1alpha, 25(OH)(2)D(2). We perfused rat kidneys in vitro with 1alpha, 25(OH)(2)[26,27-(3)H]D(2) (5 x 10(-10)M) and demonstrated that 1alpha,24(R),25-trihydroxyvitamin D(2) [1alpha,24(R),25(OH)(3)D(2)] and 1alpha,24(S),25,28(OH)(4)D(2) are the only two major physiological metabolites of 1alpha,25(OH)(2)D(2). In the same perfusion experiments, we also noted that there is no conversion of 1alpha,25(OH)(2)D(2) into 1alpha,25,28-trihydroxyvitamin D(2 )[1alpha,25,28(OH)(3)D(2)]. Moreover, 1alpha,24(S),25,28(OH)(4)D(2) is not formed in the perfused rat kidney when synthetic 1alpha,25, 28(OH)(3)D(2) is used as the starting substrate. This finding indicates that C-28 hydroxylation of 1alpha,25(OH)(2)D(2) occurs only after 1alpha,25(OH)(2)D(2) is hydroxylated at C-24 position. At present the enzyme responsible for the C-28 hydroxylation of 1alpha, 24(R),25(OH)(3)D(2) in rat kidney is not known. Recently, it was found that 1alpha,25(OH)(2)D(3)-24-hydroxylase (CYP24) can hydroxylate carbons 23, 24, and 26 of various vitamin D(3) compounds. Thus, it may be speculated that CYP24 may also be responsible for the C-28 hydroxylation of 1alpha,24(R),25(OH)(3)D(2) to form 1alpha, 24(S),25,28(OH)(4)D(2). The biological activity of 1alpha,24(S),25, 28(OH)(4)D(2), determined by its ability to induce intestinal calcium transport and bone calcium resorption in the rat, was found to be almost negligible. Also, 1alpha,24(S),25,28(OH)(4)D(2) exhibited very low binding affinity toward bovine thymus vitamin D receptor. These studies firmly establish that C-28 hydroxylation is an important enzymatic reaction involved in the inactivation of 1alpha,25(OH)(2)D(2) in kidney under physiological conditions.  相似文献   

6.
Back TG  Janzen L  Pharis RP  Yan Z 《Phytochemistry》2002,59(6):627-634
The following six novel methyl ether derivatives of brassinolide were prepared and their brassinosteroid activity was measured by means of the rice leaf lamina inclination bioassay: 2-O-methylbrassinolide, 3-O-methylbrassinolide, 2,22,23-tri-O-methylbrassinolide, 3,22,23-tri-O-methylbrassinolide, 2-O-methyl-25-methoxybrassinolide and 3-O-methyl-25-methoxybrassinolide. Brassinolide was used as a standard for comparison. All six compounds were also tested in the presence of 1000 ng of indole-3-acetic acid (IAA), an auxin that synergizes the effects of brassinosteroids. The 2-O-methyl- and 3-O-methylbrassinolide derivatives showed weak activity at high doses, which was enhanced by IAA, especially in the case of the 3-O-methyl derivative. Similarly, the 2,22,23-tri-O-methyl- and 3,22,23-tri-O-methyl derivatives displayed weak bioactivity on their own, but significantly stronger activity when applied with IAA. The 3-O-methyl and 3,22,23-tri-O-methyl analogues plus IAA were comparable in bioacivity to brassinolide alone, but were less active than brassinolide plus IAA. In each case, O-methylation at C-2 resulted in a greater loss of activity than O-methylation at C-3 under the same conditions. The relatively strong activity of 3,22,23-tri-O-methylbrassinolide in the presence of IAA is especially noteworthy as it indicates that free hydroxyl groups at C-3, C-22, and C-23 are not essential for bioactivity. Finally, 2-O-methyl- and 3-O-methyl-25-methoxybrassinolide were essentially inactive alone, and showed only a modest increase in bioactivity when coapplied with IAA.  相似文献   

7.
Abstract

A number of pyrimidine acyclic nucleosides in which the acyclic moiety is attached to the C-6 position rather than N-1 of the pyrimidine ring have been prepared. This was accomplished via treatment of lithiated 2,4-dimethoxy-5,6-dimethylpyrimidine, or, 2,4-dimethoxy-6-methylpyrirnidine with 1,3-bis-(benzyloxy)-2-propanone, benzyl chloromethyl ether or oxirane, respectively, to give the corresponding key intermediates 6-[3-benzyloxy-2-[(benzyloxy)methyl]-2-hydroxypropyl]-2,4-dimethoxy-5-methylpyrimidine (2a), 6-[3-Denzyloxy-2-[(benzyloxy)methyl]-2-hydroxypropyl]-2,4-dimethoxypyrimidine(2b), 6-(2-benzyloxyethyl)-2,4-dimethoxy-5-methylpyrimidine (3), and2,4-dunethoxy-6-(3-hydroxypropyl)-5-methylpyrimidine (4a). After acidic hydrolysis, followed by debenzylation with boron trichloride these key intermediates were converted to the target C-6 pyrimidine acyclic derivatives. Compounds 6–8b, 11–13, 15, 16, 20, 22, 26, and 29–32 were evaluated for activity against herpes viruses and human immunodeficiency virus. None of the compounds were active against the viruses nor were they cytotoxic at the highest concentration tested.  相似文献   

8.
A series of cephalosporins, 2-isocephems, and 2-oxaisocephems with C-3′ catechol-containing (pyridinium-4-thio)methyl groups and 2-isocephems with C-7 catechol related aromatics have been prepared and evaluated for antimicrobial activity. It turns out that these compounds have highly potent activity against Gram-negative bacteria, especially resistant pathogens such as Pseudomonas aeruginosa. The most active compound of the series was (6S,7S)-7-[2-(2-aminothiazol-4-yl)-2-[(Z)-[(1,5-dihydroxy-4-pyridon-2-yl)methoxy] imino]acetamido]-3-[[[(4-methyl-5-carboxymethyl)thiazol-2-yl]thio]methyl]-8-oxo-1-aza-4-thiabicyclo [4.2.0] oct-2-ene-2-carboxylic acid which exhibited potent in vitro activity against clinically isolated P. aeruginosa and Acinetobacter baumanii which is also resistant to many anti-infectives, and good in vivo efficacy against clinically isolated P. aeruginosa.

A series of cephalosporins, 2-isocephems, and 2-oxaisocephems and C-3′ or C-7 catechol or related aromatics have been prepared and evaluated for antibacterial activity.  相似文献   


9.
A convenient synthesis of inokosterone has been accomplished. Inokosterone exists as two C-25 epimers, which could be separated from each other through their diacetonide derivatives. The absolute configuration of these compounds was determined. Two C-25 epimers of 26-chloroponasterone A were synthesized from the respective C-25 epimeric inokosterone. Two epimeric 26-bromo and 26-iodoponasterone A compounds were also synthesized. Moulting activity of these compounds was evaluated using the Musca bioassay, and it was found that the (25S)-26-halo analogues were more active than the corresponding (25R)-26-halo analogues. Among the 25S series, an increase in activity with an increase in size of the halogen atom was observed, indicating that the steric factor was more important than the electronic factor in binding of these ecdysteroid analogues to the receptor. On the other hand, a decrease in activity with an increase in size of the halogen atom was noted in the 25R series, suggesting that the steric factor was less important than the electronic factor. The results indicated that the configuration at C-25 and the substituent at C-26 have significant influences on the interaction of ecdysteroids with their receptor.  相似文献   

10.
1. An assay for demethylation has been developed based on the release of tritium from 4,4-dimethyl[3alpha-(3)H]cholest-7-en-3beta-ol (II). 2. The maximum release of (3)H from 3alpha-(3)H-labelled compound (II) in a rat liver microsomal preparation occurs in the presence of NADPH and NAD(+) under aerobic conditions. 3. Incubation of 3alpha-(3)H-labelled compound (II) with NADPH under aerobic conditions leads to the formation of a 3alpha-(3)H-labelled C-4 carboxylic acid. This compound undergoes dehydrogenation on subsequent anaerobic incubation with NAD(+). 4. The (3)H released from the steroid was located in [4-(3)H]nicotinamide and the medium. Incubation with synthetic [4-(3)H(2)]NADH gave a similar result. 5. In the presence of glutamate dehydrogenase and alpha-oxoglutarate part of the (3)H released from the steroid was transferred to glutamate. 6. A series of 3-oxo steroids were reduced equally well by [4-(3)H(2)]NADH and [4-(3)H(2)]NADPH. The reduction of 5alpha-cholest-7-en-3-one was shown to use the 4B H atom from the nucleotide. 7. 3':5'-Cyclic AMP was shown to be a competitive inhibitor of the 3beta-hydroxy dehydrogenase enzyme in the demethylation reaction.  相似文献   

11.
The data presented here describe new findings related to the bioconversion of adenosine to 9-beta-D-arabinofuranosyladenine (ara-A) by Streptomyces antibioticus by in vivo investigations and with a partially purified enzyme. First, in double label in vivo experiments with [2'-18O]- and [U-14C]adenosine, the 18O:14C ratio of the ara-A isolated does not change appreciably, indicating a stereospecific inversion of the C-2' hydroxyl of adenosine to ara-A with retention of the 18O at C-2'. In experiments with [3'-18O]- and [U-14C]-adenosine, [U-14C]ara-A was isolated; however, the 18O at C-3' is below detection. The adenosine isolated from the RNA from both double label experiments has essentially the same ratio of 18O:14C. Second, an enzyme has been isolated and partially purified from extracts of S. antibioticus that catalyzes the conversion of adenosine, but not AMP, ADP, ATP, inosine, guanosine, or D-ribose, to ara-A. In a single label enzyme-catalyzed experiment with [U-14C]adenosine, there was a 9.9% conversion to [U-14C]ara-A; with [2'-3H]-adenosine, there was a 8.9% release of the C-2' tritium from [2'-3H]adenosine which was recovered as 3H2O. Third, the release of 3H as 3H2O from [2'-3H]adenosine was confirmed by incubations of the enzyme with 3H2O and adenosine. Ninety percent of the tritium incorporated into the D-arabinose of the isolated ara-A was in C-2 and 8% was in C-3. The enzyme-catalyzed conversion of adenosine to ara-A occurs without added cofactors, displays saturation kinetics, a pH optimum of 6.8, a Km of 8 X 10(-4) M, and an inhibition by heavy metal cations. The enzyme also catalyzes the stereospecific inversion of the C-2' hydroxyl of the nucleoside antibiotic, tubercidin to form 7-beta-D-arabinofuranosyl-4-aminopyrrolo[2,3-d]pyrimidine. The nucleoside antibiotic, sangivamycin, in which the C-5 hydrogen is replaced with a carboxamide group, is not a substrate. On the basis of the single and double label experiments in vivo and the in vitro enzyme-catalyzed experiments, two mechanisms involving either a 3'-ketonucleoside intermediate or a radical cation are proposed to explain the observed data.  相似文献   

12.
Vitamin D compounds added to the culture medium induce HL-60 cells to differentiate into macrophage/monocytes via a receptor mechanism. This system provides a biologically relevant assay for the study of biopotency of vitamin D analogs. Using this system, the biological activity of various fluorinated derivatives of vitamin D3 was compared with that of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). As assessed by cell morphology, nitroblue tetrazolium reduction and nonspecific esterase activity, 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (26,27-F6-1,25-(OH)2D3) and 26,26,26,27,27,27-hexafluoro-1,24-dihydroxyvitamin D3 (26,27-F6-1,24-(OH)2D3) were about 10 times as potent as 1,25-(OH)2D3 in suppressing HL-60 cell proliferation and inducing cell differentiation. The biological activity of 26,26,26,27,27,27-hexafluoro-1-hydroxyvitamin D3 (26,27-F6-1-OH-D3) was equal to that of 1,25-(OH)2D3 in this system. 1,25-(OH)2D3 and its fluorinated analogs exerted their effects on HL-60 cells in a dose-dependent manner. HL-60 cells have a specific receptor for 1,25-(OH)2D3 with an apparent Kd of 0.25 nM, identical with that of chick intestinal receptor. While the binding affinities of 26,27-F6-1,25-(OH)2D3 and 26,27-F6-1,24-(OH)2D3 for chick intestinal receptor were lower than that of 1,25-(OH)2D3 by factors of 3 and 1.5, respectively, they were as competent as 1,25-(OH)2D3 in binding to HL-60 cell receptor. The ability of 26,27-F6-1-OH-D3 to compete for receptor protein from HL-60 cells and chick intestine was about 1/70 that of 1,25-(OH)2D3. These results indicate that trifluorination of carbons 26 and 27 of vitamin D3 can markedly enhance the effect on HL-60 cells.  相似文献   

13.
Identification by full-scan GC-MS revealed that [2H6]-teasteronefed to suspension cultured cells of Marchantia polymorpha wasconverted to [2H6]3-dehydroteasterone and [2H6]typhasterol.This indicates that the cells carry out a C3-epimerization inwhich teasterone is converted to typhasterol via 3-dehydroteasterone.In vitro enzymatic conversions of teasterone to typhasterolwere also investigated. A crude cytosolic solution preparedfrom Marchantia cells catalyzed not only the dehydrogenationof teasterone to 3-dehydroteasterone but also the reductionof 3-dehydroteasterone to typhasterol. The major 4-demethysterolin cultured M. polymorpha cells was 24-methylcholesterol, theprecursor of brassinosteroids. These results suggest that enzymessimilar to those involved in the early C-6 oxidation pathwayof the brassinosteroid biosynthesis are present in the liverwort. (Received March 19, 1999; Accepted June 28, 1999)  相似文献   

14.
Metabolic experiments with deuterium-labeled castasterone in seedlings of Arabidopsis thaliana, Oryza saliva and Lycopersicon esculentum, and cultured cells of Catharanthus roseus were performed, and the metabolites were analyzed by GC-MS. In all the plant species examined, [2H3]28-norcastasterone was identified as a metabolite of [26,28-2H6]castasterone, indicating that castasterone is the biosynthetic origin of 28-norcastasterone. Moreover, the natural occurrence of 28-norcastasterone and 28-nortyphasterol in seedlings of A. thaliana has been demonstrated. This is the first report of the natural occurrence of 28-nortyphasterol in plants.  相似文献   

15.
1. A convenient synthesis of 3-hydroxytrisnorlanost-8-en-24-al and its conversion into [24-(3)H]lanosterol and [26,27-(14)C(2)]lanosterol is described. 2. A method for the efficient incorporation of lanosterol into ergosterol by the whole cells of Saccharomyces cerevisiae is also described. 3. It is shown that in the biosynthesis of ergosterol from doubly labelled lanosterol the C-24 hydrogen atom of lanosterol is retained in ergosterol. 4. On the basis of unambiguous degradations it is shown that the C-alkylation step in ergosterol biosynthesis is accompanied by the migration of a hydrogen atom from C-24 to C-25. 5. The mechanism for the biosynthesis of the ergosterol side chain is presented. 6. Mechanisms of other C-alkylation reactions are also discussed.  相似文献   

16.
Synthesis of a C-24-epimeric mixture of 25-hydroxy-[26,27-3H]vitamin D2 and a C-24-epimeric mixture of 1,25-dihydroxy-[26,27-3H]vitamin D2 by the Grignard reaction of the corresponding 25-keto-27-nor-vitamin D2 and 1 alpha-acetoxy-25-keto-27-nor-vitamin D3 with tritiated methyl magnesium bromide is described. Separation of epimers by high-performance liquid chromatography afforded pure radiolabeled vitamins of high specific activity (80 Ci/mmol). The identities and radiochemical purities of 25-hydroxy-[26,27-3H[vitamin D2 and 1,25-dihydroxy-[26,27-3H]vitamin D2 D2 were established by cochromatography with synthetic 25-hydroxyvitamin D2 or 1,25-dihydroxyvitamin D2. Biological activity of 25-hydroxy-[26,27-3H]vitamin D2 was demonstrated by its binding to the rat plasma binding protein for vitamin D compounds, and by its in vitro conversion to 1,25-dihydroxy-[26,27-3H]vitamin D2 by kidney homogenate prepared from vitamin D-deficient chickens. The biological activity of 1,25-dihydroxy-[26,27-3H]vitamin D2 was demonstrated by its binding to the chick intestinal receptor for 1,25-dihydroxyvitamin D3.  相似文献   

17.
Aldose-ketose isomerases are known to catalyze a partial and sometimes complete intramolecular hydrogen transfer between C-1 of the ketose and C-2 of the aldose. It was recently shown (Feather, M. S., and Harris, D. W. (1975) J. Amer. Chem. Soc.97, 178–181) that the same type of transfer occurs during the acid-catalyzed interconversion of d-fructose, d-glucose, and d-mannose. A similar transfer is demonstrated herein for the conversion of d-xylose to d-xylulose in acid solution. d-[2-3H]xylose was isomerized in aqueous sulfuric acid and the resulting d-[3H]xylulose was isolated in 6% yield. The ketose had 18.3% the activity of the starting aldose. Chemical degradation showed that all the carbon-bound tritium of the d-[3H]xylulose was located at C-1, thus indicating a C-2 → C-1 intramolecular hydrogen transfer. During the reaction, less than 1.2% of the total radiochemical activity was found in the solvent, and, the unreacted d-[2-3H]xylose was recovered, having an activity nearly the same as the starting material. The differences in activity, therefore, of the d-[2-3H]xylose and the d-[1-3H]xylulose are due to an isotope effect (KHKT) which is indicated to be 5.4. The data are discussed in terms of currently accepted models for isomerase mechanisms.  相似文献   

18.
Precursor administration experiments with 2H-labeled 6-oxocampestanol, 6-deoxocastasterone and 6alpha-hydroxycastasterone in cultured cells of Catharanthus roseus were performed and the metabolites were analyzed by GC-MS. [2H6]Cathasterone was identified as a metabolite of [2H6]6-oxocampestanol, whereas [2H6]6alpha-hydroxycastasterone and [2H6]castasterone were identified as metabolites of [2H6]6-deoxocastasterone, and [2H6]castasterone was identified as a metabolite of [2H6]6alpha-hydroxycastasterone, indicating that 6-deoxocastasterone is converted to castasterone via 6alpha-hydroxycastasterone. In addition, 6-deoxocathasterone, a putative biosynthetic intermediate in the late C6-oxidation pathway, was identified as an endogenous brassinosteroid. These studies provide further evidence supporting our proposed biosynthetic pathways for brassinolide.  相似文献   

19.
A 3H label was introduced at the C-1 position of the mannosidase I inhibitor 1-deoxymannojirimycin (dMM) by catalytic hydrogenolysis of benzyl-2,3-O-isopropylidene-5-N-benzyl-6-O-benzyl-alpha-D-mannofurano side with 3H2. 1-[3H]dMM as well as its precursor 1-[3H]2,3-O-isopropylidene-dMM had identical Rf as the nonradioactive compounds on TLC. Furthermore, alpha 1-antitrypsin secreted by HepG2 cells was modified indistinguishably by treatment of the cells with dMM and 1-[3H]dMM. Thus, 1-[3H]dMM had chemical and biological properties identical with authentic dMM. Uptake of [14C]mannose by K562 cells could be inhibited by glucose but not by the mannose analogue dMM. Thus, dMM does not enter the cell through hexose transporter(s). Uptake of 1-[3H]dMM by K562 cells could not be inhibited by increasing concentrations of nonradioactive dMM (from 1-32,000 microM), showing transport of dMM into cells through nonfacilitated diffusion. Furthermore, uptake of 1-[3H]dMM by K562 cells was observed at 0 degrees C.  相似文献   

20.
Inosine monophosphate dehydrogenases (IMPDHs) are the committed step in de novo guanine nucleotide biosynthesis. There are two separate, but very closely related IMPDH isoenzymes, termed type I and type II. IMPDHs are widely believed to be major targets for cancer and transplantation therapy. Mycophenolic acid (MPA) is a potent inhibitor of IMPDHs. Previously, we found that MPA acted as a latent agonist of this nuclear hormone receptor in U2OS cells, and 6'-hydroxamic acid derivatives of MPA inhibited tubulin-specific histone deacetylase[s] (HDAC[s]) in HeLa cells. Although MPA is a promising lead compound, structure-activity relationships (SARs) for inhibition of IMPDH, and the mechanism action of MPA derivatives have not well been understood. We therefore synthesized, evaluated MPA derivatives as IMPDH inhibitor in vitro and cellular level, and explored their biological function and mechanism in cultured cells. This paper exhibits that (i) functional groups at C-5, C-7, and C-6' positions in MPA are important for inhibitory activity against IMPDH, (ii) it is difficult to improve specificity against IMPDH II by modification of 5-, 7-, and 6'-group, (iii) demethylation of 5-OMe results in increasing hydrophilicity, and lowering cell permeability, (iv) ester bonds of protective groups at C-7 and C-6' positions are hydrolyzed to give MPA in cultures, (v) the effects of a tubulin-specific HDAC[s] inhibitor on proliferation and differentiation are weaker than its inhibitory activity against IMPDH. The present work may provide insight into the development of a new class of drug lead for treating cancer and transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号