首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Rhodococcus erythropolis strain S1 uses the gentisate pathway to metabolize salicylate and m -hydroxybenzoate and the protocatechuate pathway to degrade p -hydroxybenzoate. m -Hydroxybenzoate 6-hydroxylase was induced by growth on m -hydroxybenzoate or gentisate, and salicylate 5-hydroxylase only by growth on salicylate. p -Hydroxybenzoate 3-hydroxylase could be induced only by growth on p -hydroxybenzoate. m -Hydroxybenzoate or p -hydroxybenzoate could repress the induction of salicylate 5-hydroxylase. Maleylpyruvate isomerase in the gentisate pathway did not require reduced glutathione.  相似文献   

2.
3.
The 3-hydroxybenzoate inducible gentisate 1,2-dioxygenases have been purified to homogeneity from P. acidovorans and P. testosteroni, the two divergent species of the acidovorans group of Pseudomonas. Both enzymes exhibit a 40-fold higher specific activity than previous preparations and have an (alpha Fe)4 quaternary structure (holoenzyme Mr = 164,000 and 158,000, respectively). The enzymes have different amino terminal sequences, amino acid contents, and isoelectric points. Each enzyme contains essential active site iron that is EPR silent but binds nitric oxide quantitatively to give an EPR active complex (S = 3/2), showing that the iron is Fe2+ with coordination sites for exogenous ligands. The EPR spectra of these complexes are altered uniquely for each enzyme when gentisate is bound. This suggests that substrate binds to or near the iron and shows that the substrate-iron interactions of each enzyme are subtly different. The kinetic parameters for turnover of gentisate by the enzymes are nearly identical (kcat/Km = 4.3 x 10(6) s-1 M-1). Both enzymes cleave a wide range of gentisate analogs substituted in the 3 or 4 ring position, although at reduced rates relative to gentisate. Of the two enzymes, P. testosteroni gentisate 1,2-dioxygenase exhibits substantially lower kcat/Km values for the turnover of these compounds. Evidence for both steric and electronic substituent effects is obtained. In accord with the results of Wheelis et al. (Wheelis, M. L., Palleroni, N. J., and Stanier, R. Y. (1967) Arch. Mikrobiol. 59, 302-314), 3-hydroxybenzoate is shown to be metabolized by P. acidovorans through the gentisate pathway, and gentisate 1,2-dioxygenase is the only ring cleavage dioxygenase induced. In contrast, 3-hydroxybenzoate is metabolized by P. testosteroni exclusively through the protocatechuate pathway utilizing protocatechuate 4,5-dioxygenase, although gentisate 1,2-dioxygenase is coinduced. Growth of P. testosteroni on 3-O-methylbenzoate or 5-O-methylsalicylate is shown to result in a approximately 10-fold increase in the amount of gentisate 1,2-dioxygenase relative to protocatechuate 4,5-dioxygenase. Together, these results suggest that induction of gentisate 1,2-dioxygenase by 3-hydroxybenzoate in P. testosteroni may be adventitious and that this enzyme may function in fundamentally different metabolic pathways in the two related Pseudomonas species.  相似文献   

4.
A denitrifying Pseudomonas sp. is able to oxidize aromatic compounds compounds completely to CO2, both aerobically and anaerobically. It is shown that benzoate is aerobically oxidized by a new degradation pathway via benzoyl-coenzyme A (CoA) and 3-hydroxybenzoyl-CoA. The organism grew aerobically with benzoate, 3-hydroxybenzoate, and gentisate; catechol, 2-hydroxybenzoate, and protocatechuate were not used, and 4-hydroxybenzoate was a poor substrate. Mutants were obtained which were not able to utilize benzoate as the sole carbon source aerobically but still used 3-hydroxybenzoate or gentisate. Simultaneous adaptation experiments with whole cells seemingly suggested a sequential induction of enzymes of a benzoate oxidation pathway via 3-hydroxybenzoate and gentisate. Cells grown aerobically with benzoate contained a benzoate-CoA ligase (AMP forming) (0.1 mumol min-1 mg-1) which converted benzoate but not 3-hydroxybenzoate into its CoA thioester. The enzyme of 130 kDa composed of two identical subunits of 56 kDa was purified and characterized. Cells grown aerobically with 3-hydroxybenzoate contained a similarly active CoA ligase for 3-hydroxybenzoate, 3-hydroxybenzoate-CoA ligase (AMP forming). Extracts from cells grown aerobically with benzoate catalyzed a benzoyl-CoA- and flavin adenine dinucleotide-dependent oxidation of NADPH with a specific activity of at least 25 nmol NADPH oxidized min-1 mg of protein-1; NADH and benzoate were not used. This new enzyme, benzoyl-CoA 3-monooxygenase, was specifically induced during aerobic growth with benzoate and converted [U-14C]benzoyl-CoA stoichiometrically to [14C]3-hydroxybenzoyl-CoA.  相似文献   

5.
Abstract Salmonella typhimurium was shown to use the gentisate pathway to metabolize m -hydroxybenzoate and gentisate. m -Hydroxybenzoate hydroxylase and gentisate 1,2-dioxygenase were induced by growth on either gentisate or m -hydroxybenzoate. These enzymes were not detected when the bacteria were grown with glucose or glucose and either m -hydroxybenzoate or gentisate. However, both enzymes were induced when the bacteria were grown on succinate with either substrate. The maleylpyruvate isomerase required reduced glutathione and was irreversibly inhibited by N -ethylmaleimide.  相似文献   

6.
Pseudomonas sp. strain PPD and Alcaligenes sp. strain PPH isolated from soil by enrichment culture technique utilize 2-, 3- and 4-hydroxybenzoates as the sole source of carbon and energy. The degradation pathways were elucidated by performing whole-cell O(2) uptake, enzyme activity and induction studies. Depending on the mixture of carbon source and the preculture condition, strain PPH was found to degrade 2-hydroxybenzoate either via the catechol or gentisate route and has both salicylate 1-hydroxylase and salicylate 5-hydroxylase. Strain PPD utilizes 2-hydroxybenzoate via gentisate. Both strains degrade 3- and 4-hydroxybenzoate via gentisate and protocatechuate, respectively. Enzymes were induced by respective hydroxybenzoate. Growth pattern, O(2) uptake and enzyme activity profiles on the mixture of three hydroxybenzoates as a carbon source suggest coutilization by both strains. When 3- or 4-hydroxybenzoate grown culture was used as an inoculum, strain PPH failed to utilize 2-hydroxybenzoate via catechol, indicating the modulation of the metabolic pathways, thus generating metabolic diversity.  相似文献   

7.
Micrococcus sp. strain 12B was isolated by enriching for growth with dibutylphthalate as the sole carbon and energy source. A pathway for the metabolism of dibutylphthalate and phthalate by micrococcus sp. strain 12B is proposed: dibutylphthalate leads to monobutylphthalate leads to phthalate leads to 3,4-dihydro-3,4-dihydroxyphthalate leads to 3,4-dihydroxyphthalate leads to protocatechuate (3,4-dihdroxybenzoate). Protocatechuate is metabolized both by the meta-cleavage pathway through 4-carboxy-2-hydroxymuconic semialdehyde and 4-carboxy-2-hydroxymuconate to pyruvate and oxaloacetate and by the ortho-cleavage pathway to beta-ketoadipate. Dibutylphthalate- and phthalate-grown cells readily oxidized dibutylphthalate, phthalate, 3,4-dihydroxyphthalate, and protocatechuate. Extracts of cells grown with dibutylphthalate or phthalate contained the 3,4-dihydroxyphthalate decarboxylase and the enzymes of the protocatechuater 4,5-meta-cleavage pathway. Extracts of dibutylphthalate-grown cells also contained the protocatechuate ortho-cleavage pathway enzymes. The dibutylphthalate-hydrolyzing esterase and 3,4-dihydroxyphthalate decarboxylase were constitutively synthesized; phthalate-3,4-dioxygenase (and possibly the "dihydrodiol" dehydrogenase) was inducible by phthalate or a metabolite occurring before protocatechuate in the pathway; two protocatechuate oxygenases and subsequent enzymes were inducible by protocatechuate or a subsequent metabolic product. During growth at 37 degrees C, strain 12B gave clones at high frequency that had lost the ability to grow with phthalate esters. One of these nonrevertible mutants, strain 12B-Cl, lacked all of the enzymes required for the metabolism of dibutylphthalate through the protocatechuate meta-cleavage pathway. Enzymes for the metabolism of protocatechuate by the ortho-cleavage pathway were present in this strain grown with p-hydroxybenzoate or protocatechuate.  相似文献   

8.
Abstract Rhizobium trifolii TA1 and Rhizobium leguminosarum MNF 3841 grow on a range of aromatic substrates. R. trifolii TA1 possesses enzymes of both the catechol and protocatechuate pathways, whereas R. leguminosarum MNF 3841 only has enzymes of the latter pathway. The pathways are induced by growth on benzoate or 4-hydroxybenzoate, respectively, but they are not cross-inducible. 4-Hydroxybenzoate permease and hydroxylase are induced by growth on 4-hydroxybenzoate but not on protocatechuate, suggesting that they are regulated separately from protocatechuate dioxygenase. The uptake systems for both benzoate and 4-hydroxybenzoate are inhibited by azide, carbonyl cyanide m -chlorophenyl hydrazone and N , N '-dicyclohexylcarbodiimide but are insensitive to arsenate. Salicylate and protocatechuate interfere with benzoate and 4-hydroxybenzoate uptake, respectively.  相似文献   

9.
The ability of strain Rhodococcus opacus 1CP to utilize 3-hydroxybenzoate (3-HBA) and gentisate in concentrations up to 600 and 700 mg/L, respectively, as sole carbon and energy sources in liquid mineral media was demonstrated. Using high-performance liquid chromatography (HPLC) and thin-layer chromatography, 2,5-dihydroxybenzoate (gentisate) was identified as the key intermediate of 3-hydroxybenzoate transformation. In the cell-free extracts of the strain grown on 3-HBA or gentisate, the activities of 3-hydroxybenzoate 6-hydroxylase, gentisate 1,2-dioxygenase, and maleylpyruvate isomerase were detected. During growth on 3-HBA, low activity of catechol 1,2-dioxygenase was detected. Based on the data obtained, the pathway of 3-HBA metabolism by strain R. opacus 1CP was proposed.  相似文献   

10.
11.
The regulation of the inducible set of gentisate pathway enzymes used by Pseudomonas alcaligenes (P25X1) has been studied in strains derived from mutant strains of P25X1 that had lost the constitutive enzymes that degrade m –cresol, 2,5–xylenol and 3,5–xylenol. The enzyme, 3-hydroxybenzoate 6-hydroxylase II, that catalyzes the oxidation of 3-hydroxybenzoate to gentisate is substrate- and product-induced while gentisate dioxygenase II is substrate induced. Neither 3-hydroxybenzoate nor gentisate could induce the synthesis of maleylpyruvate hydrolase II and fumarylpyruvate hydrolase II. The results suggest that the structural genes encoding these four inducible enzymes and maleylpyruvate hydrolase I (a constitutive enzyme) exist in at least four operons. There is strict induction specificity of expression of this inducible set of gentisate pathway enzymes. 3-Hydroxy-4-methyl-benzoate failed to induce whilst 3-hydroxybenzoate and 3-hydroxy-5-methylbenzoate served as inducers of 6-hydroxylase II. Degradation of 2,5-xylenol is mediated by constitutive enzymes whereas the inducible set of enzymes are responsible for the metabolism of m -cresol and 3,5-xylenol.  相似文献   

12.
Bacillus flexus strain XJU-4 utilized 3-nitrobenzoate at 12 mM as a sole source of carbon and energy. This strain also utilized 4-nitrobenzoate, 2-nitrotoluene and nitrobenzene as growth substrates. The optimum conditions for degradation of 3-nitrobenzoate by the organism were found to be at pH 7.0 and temperature 30°C. Metabolite analysis, growth and enzymatic studies have revealed that the organism degraded 3-nitrobenzoate by oxidative mechanism through protocatechuate with the release of nitrite. The cells grown on 3-nitrobenzoate utilized protocatechuate but not 3-hydroxybenzoate, 3-aminobenzoate, 4-hydroxy-3-nitrobenzoate and 4-nitrocatechol. The cell-free extract of Bacillus flexus strain XJU-4 grown on 3-nitrobenzoate contained the activity of protocatechuate 2,3-dioxygenase, which suggest that protocatechuate was further degraded by a novel 2,3-dioxygenative meta-cleavage pathway.  相似文献   

13.
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains.  相似文献   

14.
Corynebacterium glutamicum used gentisate and 3-hydroxybenzoate as its sole carbon and energy source for growth. By genome-wide data mining, a gene cluster designated ncg12918-ncg12923 was proposed to encode putative proteins involved in gentisate/3-hydroxybenzoate pathway. Genes encoding gentisate 1,2-dioxygenase (ncg12920) and fumarylpyruvate hydrolase (ncg12919) were identified by cloning and expression of each gene in Escherichia coli. The gene of ncg12918 encoding a hypothetical protein (Ncg12918) was proved to be essential for gentisate-3-hydroxybenzoate assimilation. Mutant strain RES167Deltancg12918 lost the ability to grow on gentisate or 3-hydroxybenzoate, but this ability could be restored in C. glutamicum upon the complementation with pXMJ19-ncg12918. Cloning and expression of this ncg12918 gene in E. coli showed that Ncg12918 is a glutathione-independent maleylpyruvate isomerase. Upstream of ncg12920, the genes ncg12921-ncg12923 were located, which were essential for gentisate and/or 3-hydroxybenzoate catabolism. The Ncg12921 was able to up-regulate gentisate 1,2-dioxygenase, maleylpyruvate isomerase, and fumarylpyruvate hydrolase activities. The genes ncg12922 and ncg12923 were deduced to encode a gentisate transporter protein and a 3-hydroxybenzoate hydroxylase, respectively, and were essential for gentisate or 3-hydroxybenzoate assimilation. Based on the results obtained in this study, a GSH-independent gentisate pathway was proposed, and genes involved in this pathway were identified.  相似文献   

15.
E Grund  C Knorr    R Eichenlaub 《Applied microbiology》1990,56(5):1459-1464
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains.  相似文献   

16.
Three types of monohydroxybenzoate oxygenase, salicylate 5-oxygenase (SAL5O) forming gentisate from salicylate, m-hydroxybenzoate 6-oxygenase (MHB6O) forming gentisate from m-hydroxybenzoate, and p-hydroxybenzoate 3-oxygenase (PHB3O) forming protocatechuate from p-hydroxybenzoate, were purified from a cell-free extract of Rhodococcus erythropolis S-1, a Gram-positive bacterium. Each purified enzyme was homogenous on native PAGE. Each enzyme was a tetramer having identical subunits, a flavoporotein containing FAD, and a NADH-dependent monooxygenase. The three enzymes were much alike in general enzymatic properties, but very different in substrate specificity.  相似文献   

17.
18.
When Acinetobacter sp. strain 4-CB1 was grown on 4-chlorobenzoate (4-CB), it cometabolized 3,4-dichlorobenzoate (3,4-DCB) to 3-chloro-4-hydroxybenzoate (3-C-4-OHB), which could be used as a growth substrate. No cometabolism of 3,4-DCB was observed when Acinetobacter sp. strain 4-CB1 was grown on benzoate. 4-Carboxyl-1,2-benzoquinone was formed as an intermediate from 3,4-DCB and 3-C-4-OHB in aerobic and anaerobic resting-cell incubations and was the major transient intermediate found when cells were grown on 3-C-4-OHB. The first dechlorination step of 3,4-DCB was catalyzed by the 4-CB dehalogenase, while a soluble dehalogenase was responsible for dechlorination of 3-C-4-OHB. Both enzymes were inducible by the respective chlorinated substrates, as indicated by oxygen uptake experiments. The dehalogenase activity on 3-C-4-OHB, observed in crude cell extracts, was 109 and 44 nmol of 3-C-4-OHB min-1 mg of protein-1 under anaerobic and aerobic conditions, respectively. 3-Chloro-4-hydroxybenzoate served as a pseudosubstrate for the 4-hydroxybenzoate monooxygenase by effecting oxygen and NADH consumption without being hydroxylated. Contrary to 4-CB metabolism, the results suggest that 3-C-4-OHB was not metabolized via the protocatechuate pathway. Despite the ability of resting cells grown on 4-CB or 3-C-4-OHB to carry out all of the necessary steps for dehalogenation and catabolism of 3,4-DCB, it appeared that 3,4-DCB was unable to induce the necessary 4-CB dehalogenase for the initial p-dehalogenation step.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
When Acinetobacter sp. strain 4-CB1 was grown on 4-chlorobenzoate (4-CB), it cometabolized 3,4-dichlorobenzoate (3,4-DCB) to 3-chloro-4-hydroxybenzoate (3-C-4-OHB), which could be used as a growth substrate. No cometabolism of 3,4-DCB was observed when Acinetobacter sp. strain 4-CB1 was grown on benzoate. 4-Carboxyl-1,2-benzoquinone was formed as an intermediate from 3,4-DCB and 3-C-4-OHB in aerobic and anaerobic resting-cell incubations and was the major transient intermediate found when cells were grown on 3-C-4-OHB. The first dechlorination step of 3,4-DCB was catalyzed by the 4-CB dehalogenase, while a soluble dehalogenase was responsible for dechlorination of 3-C-4-OHB. Both enzymes were inducible by the respective chlorinated substrates, as indicated by oxygen uptake experiments. The dehalogenase activity on 3-C-4-OHB, observed in crude cell extracts, was 109 and 44 nmol of 3-C-4-OHB min-1 mg of protein-1 under anaerobic and aerobic conditions, respectively. 3-Chloro-4-hydroxybenzoate served as a pseudosubstrate for the 4-hydroxybenzoate monooxygenase by effecting oxygen and NADH consumption without being hydroxylated. Contrary to 4-CB metabolism, the results suggest that 3-C-4-OHB was not metabolized via the protocatechuate pathway. Despite the ability of resting cells grown on 4-CB or 3-C-4-OHB to carry out all of the necessary steps for dehalogenation and catabolism of 3,4-DCB, it appeared that 3,4-DCB was unable to induce the necessary 4-CB dehalogenase for the initial p-dehalogenation step.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Rhodococcus sp. strain NCIMB 12038 utilizes naphthalene as a sole source of carbon and energy, and degrades naphthalene via salicylate and gentisate. To identify the genes involved in this pathway, we cloned and sequenced a 12-kb DNA fragment containing a gentisate catabolic gene cluster. Among the 13 complete open reading frames deduced from this fragment, three (narIKL) have been shown to encode the enzymes involved in the reactions of gentisate catabolism. NarI is gentisate 1,2-dioxygenase which converts gentisate to maleylpyruvate, NarL is a mycothiol-dependent maleylpyruvate isomerase which catalyzes the isomerization of maleylpyruvate to fumarylpyruvate, and NarK is a fumarylpyruvate hydrolase which hydrolyzes fumarylpyruvate to fumarate and pyruvate. The narX gene, which is divergently transcribed with narIKL, has been shown to encode a functional 3-hydroxybenzoate 6-monooxygenase. This led us to discover that this strain is also capable of utilizing 3-hydroxybenzoate as its sole source of carbon and energy. Both NarL and NarX were purified to homogeneity as His-tagged proteins, and they were determined by gel filtration to exist as a trimer and a monomer, respectively. Our study suggested that the gentisate degradation pathway was shared by both naphthalene and 3-hydroxybenzoate catabolism in this strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号