首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five formulations of four benzimidazole derived fungicides, carbendazim, benomyl, thiophanate methyl and methyl 4-[2-(2-dimethylamino acetamide) phenyl]-3-thioallophanate were compared for their toxicity towards two pathogenic isolates of Rhizoctonia solani and three of R. bataticola. The isolates of two fungi showed significant differences in mycelial growth inhibition by the five fungicides. Benomyl and carbendazim were most inhibitory to all isolates of both fungi while the sesame isolate of R. bataticola was least sensitive to all fungicides. Disease control (90%) was obtained with low concentrations of benomyl against root rot of cowpea caused by R. solani, and with thiophanate methyl against root rot of sesame and sunflower, and leaf blight of mung bean caused by R. bataticola. The spread of stalk-end rot of sunflower heads was best checked with a spray of thiophanate methyl. The results suggest that benzimidazole fungicides having similar toxophores act differently for disease control in different host-parasite combinations.  相似文献   

2.
Of 41 fungicides tested in the laboratory, copper carbonate, copper sulphate, mercuric chloride, Agrosan GN, quintozene, kasugamycin, carboxin, pyracar-bolid, carbendazim, chloroneb, benomyl, Ohric, RH 893 (2-n-octyl-4-isothiazole-3-one) and Terrazole were most inhibitory to the mycelial growth of Rhizoctonia solani on Czapek's agar plates and had EC50 values of less than 1 μg a.i./ml, while copper oxychloride, Udonkor, zineb, ziram, F 319 (3-hydroxy-5-methyl isoxazole) and anilazine were much less toxic, ziram being least inhibitory with an EC50 of 214 μg a.i./ml. Of 17 fungicides tested in the greenhouse as seed treatments, thiabendazole, carbendazim, benomyl, thiophanate-methyl, dichlozoline and Ohric gave 80–90% control of damping-off of mung bean seedlings. A single soil drench with thiophanate-methyl and two drenches with benomyl gave about 90% disease control, More seedlings with R. solani infection survived when thiophanate-methyl was used as a post-inoculation soil drench than when benomyl or chloroneb were used.  相似文献   

3.
4.
5.
Foliar blight and dieback of durian seedlings and trees in Peninsular Malaysia was found to be caused by Rhizoctonia solani (teleomorph - Thanatephoms cucumeris) The fungus grew well and produced abundant sclerotia at temperatures higher than 24°C with an optimum at 28°C. It grew poorly at 35°C and did not grow at 10°C. The strains studied were found to belong to the anastomosis group AG-1. They were pathogenic on durian, papaya, cucumber, long bean, Mikania weed, padi, musk melon, mung bean, Zoysia grass, Bermuda grass, and St Augustine grass. They were mildly pathogenic on groundnut, and non-pathogenic on maize, guava and Brassica‘pak choy’. The disease was effectively controlled by foliar sprays of pencycuron and benomyl; triadimefon and an antagonistic bacterium suspension treatment were less effective and quintozene-etridiazole mixture gave poor disease control.  相似文献   

6.
Nine isolates of Rhizoctonia solani from various hosts were selected for this study. The isolates were tested for their compatibility by an anastomosis test. Isolates were classified into two Egyptian anastomosis groups (EAG-1 and EAG-2). The isolates varied in virulence, thiamine requirement and quality and quantity of free and protein amino acids.  相似文献   

7.
8.
9.
Summary

One hundred and sixty-two agarics are recorded for Hirta and two from Dùn, two islands situated off the West coast of Scotland in the St. Kilda complex. The agarics are described in relation to the ecological noda proposed by McVean for the higher plant communities of the islands. Omphalina ericetorum and Nolanea staurospora were by far the commonest species: eighttaxa which are not in the New British Check List are recorded from Hirta. An appendix dealing with the taxonomy and nomenclature of the more critical species in the list is given.  相似文献   

10.
A remarkable effect of validamycin on the morphology of Rhizoctonia solani was seen after 2 days culture when the fungus was cultivated in a Roux flask with standing. In accordance with the morphological change, the production of laminarinase and glucan synthetase by the fungus was affected by validamycin.

The production of laminarinase was increased in the culture filtrate, and significantly decreased in the mycelium in the presence of validamycin. While the intracellular production of glucan synthetase in the culture with validamycin (10~50μg/ml) increased by 40~60% compared with that in the control culture.  相似文献   

11.
The unusual metabolism of the cruciferous phytoalexin camalexin by virulent and weakly virulent isolates of the root rot fungus Rhizoctonia solani Kuhn is reported. This biotransformation proceeded via 5-hydroxycamalexin, which was further biotransformed into more polar metabolites. Importantly, the metabolites resulting from transformation of camalexin were significantly less toxic to the pathogen than camalexin. Thus, it was concluded that R. solani can detoxify camalexin through oxidation of the indole ring. The chemistry involved in the structure determination of the intermediates of this pathway, their synthesis as well as antifungal activity is described.  相似文献   

12.
13.
The ability of the soil fungus Rhizoctonia solani to degrade phenyl-substituted urea herbicides was investigated. The fungus was able to transform chlorbromuron [3-(3-chloro-4-bromophenyl)-1-methyl-1-methoxyurea] to the demethylated product [3-(3-chloro-4-bromophenyl)-1-methoxyurea], which was isolated and identified. Evidence was obtained that further degradation of chlorbromuron occurred. Several other phenylurea compounds (chloroxuron, diuron, fenuron, fluometuron, linuron, metobromuron, neburon, and siduron) were also metabolized by the fungus, indicating that R. solani may possess a generalized ability to attack this group of herbicides.  相似文献   

14.
Our earlier studies had shown that as fungi age, many of their vital functions decrease; in Rhizoctonia solani, protein synthesis is one of the functions so affected. We now find that the ability to methylate tRNA, a vital component of the protein synthesizing system, also decreases with age. This methylation of Escherichia coli tRNA by R. solani methylase preparations increased with the concentration of enzyme and with time of incubation; in both cases the rate of increase was considerably higher for preparations from young cells than for those from old cells. The methylation reaction also increased with the concentration of substrate tRNA, with temperature, at least to 45° C, and with pH to 9.0. Methylase preparations from R. solani methylated both exogenous E. coli tRNA and yeast tRNA, but were only weakly active on isolated R. solani tRNA. However, acid-precipitated methylases from R. solani were very effective in methylating the homologous exogenous tRNA. Regardless of the source of the tRNA used as substrate, the methylases from older cells were always less active than those from young cells from the same mycelium. No methylase inhibitor was detected in the fungus.  相似文献   

15.
Sheath blight disease of rice caused by Rhizoctonia solani Kühn is economically important disease in most of the world’s rice growing areas. The disease causes severe yield losses of >20 % of rice in Thailand. Our previous investigation reported the antifungal activity of Streptomyces philanthi RM-1-138 against R. solani PTRRC-9. In this study, glucose yeast-malt extract medium, initial pH of 7.5 and a temperature of 30 °C were found to be optimum for both cell growth and antifungal activity of S. philanthi RM-1-138. The inhibition of 94 and 100 % on the growth of R. solani PTRRC-9 were achieved from the antifungal metabolites of the 6 and 9-days-old culture filtrates of S. philanthi RM-1-138, respectively. Heat treatment on the culture filtrate had slight effect on its antifungal activity. The culture broth demonstrated higher antifungal activity on growth of R. solani PTRRC-9 (90.4 %) than the culture filtrate (31.5 %) and its effective dose was at 0.1 % (v/v). The present results indicated the possibilities of using either the culture broth or culture filtrate of S. philanthi RM-1-138 to inhibit growth of R. solani PTRRC-9.  相似文献   

16.
Plants accumulate a great diversity of natural products, many of which confer protective effects against phytopathogenic attack. Earlier we had demonstrated that the leaf extracts of Zizyphus jujuba and Ipomoea carnea inhibit the in vitro mycelial growth of Rhizoctonia solani, and effectively reduce the incidence of sheath blight disease in rice.7 Here we demonstrate that foliar application of the aqueous leaf extracts of Z. jujuba and I. carnea followed by challenge inoculation with R. solani induces systemic resistance in rice as evident from significantly increased accumulation of pathogenesis-related proteins such as chitinase, β-1,3-glucanase and peroxidase, as well as defense-related compounds such as phenylalanine ammonia-lyase and phenolic substances. Thin layer chromatographic separation of secondary metabolites revealed presence of alkaloid and terpenoid compounds in the leaf extracts of Z. jujuba that exhibited toxicity against R. solani under in vitro condition. Thus, the enhanced sheath blight resistance in rice seedlings treated with leaf extracts of Z. jujuba or I. carnea can be attributed to the direct inhibitory effects of these leaf extracts as well as their ability to elicit systemic resistance against R. solani.Key words: sheath blight, Zizyphus jujuba, Ipomoea carnea, Rhizoctonia solani, induced systemic resistance, antimicrobial compoundsSheath blight disease of rice, caused by Rhizoctonia solani, has become a major production constraint in intensive rice cropping systems where semi-dwarf, nitrogen-responsive and high-yielding rice cultivars are grown. The disease causes an annual yield loss of upto 50%.1 R. solani is both soil- and water-borne, and can infect more than 27 families of both monocot and dicot species.2 Natural host genetic resistance to R. solani has not been recorded in cultivars or wild relatives of rice.3 Several broad spectrum fungicides have been recommended for control of sheath blight, however, chemical method of disease management is neither practical due to high cost of fungicides nor sustainable as it can affect the balance of ecosystem by destroying beneficial microbial population. In addition, the environmental pollution problems associated with indiscriminate use of synthetic pesticides have prompted investigations on exploiting bio-pesticides of plant and microbial origin.Plants accumulate an enormous variety of over 100,000 secondary metabolites,4 which can act as pre-existing chemical inhibitors to invading pathogens and/or help strengthen defense response of host plant. The pre-formed infectional barriers in plants are generally referred to as “phytoanticipins;” whereas, the antimicrobial compounds that are synthesized de novo in response to pathogen attack are referred to as “phytoalexins.”5 Because of years of selective breeding leading to removal of natural products, the endogenous levels of phytoanticipins in commonly cultivated crop species are generally low and often not sufficient to fight pathogen attack, effectively.4 Various weed species and wild relatives of crop plants that are not subjected to selective breeding are believed to contain higher levels of antimicrobial compounds, consistent with their ability to fight invading pathogens more effectively than cultivated crop species. Identification of such weed/plant species that are enriched with antimicrobial principles, isolation of bio-active compounds from them, and application in the form of concentrated formulations to crop plants can augment their disease resistance capability by directly inhibiting the growth of pathogen and inducing defense responses. Indeed, the antimicrobial properties of tissue extracts of several weed/plant species have been reported by a number of research groups world-wide, especially in Asia and Latin America.613Earlier, we had evaluated the antimicrobial activity of leaf extracts of 16 different plant species belonging to 16 different families and demonstrated that leaf extracts of most of these plant species exhibit growth-inhibitory activities against R. solani and Xanathomoas oryzae pv. oryzae (Xoo).7 Among these, the leaf extracts of Datura metel were found to be the most effective in inhibiting the mycelial growth and sclerotia formation of R. solani, and the growth of Xoo, as well as in reducing the incidence of sheath blight and bacterial blight diseases caused by these pathogens, respectively, under greenhouse condition.7 We further demonstrated that rice seedlings treated with leaf extracts of D. metel accumulated significantly higher levels of pathogenesis-related (PR) proteins and other defense related compounds following challenge inoculation with R. solani or Xoo.7 Our attempts to identify biologically active compounds from D. metel revealed the presence of a withanolide compound “daturilin” that exhibited remarkable antibacterial activity against Xoo.7Apart from D. metel, two other plants species, Zizyphus jujuba and Ipomoea carnea, were found to possess remarkable antifungal activity against R. solani.7 Z. jujuba is a thorny rhamnaceous plant that is widely distributed in Europe and South-eastern Asia. I. carnea of convolvulaceae family, commonly known as morning glory, is a toxic weed found in abundance in India, Brazil, the United States and other countries.14 Both of these plant species have allelopathic effect and are commonly used in folklore medicine for curing multiple diseases.1518 The aqueous and methanol leaf extracts of Z. jujuba and I. carnea have been found to be highly effective in reducing in vitro mycelial growth, and therefore, sclerotia production of R. solani.7 In the greenhouse experiments, rice seedlings sprayed with leaf extracts of Z. jujuba and I. carnea exhibited 44 and 34% reduction in severity of sheath blight disease over the control, respectively.7 While these findings are encouraging, the mechanisms by which the leaf extracts of Z. jujuba and I. carnea modulate defense responses in rice have not yet been explored.Plants are endowed with defense genes which remain quiescent or are expressed at basal levels in healthy plants. Activation of defense genes results in induction of systemic resistance in host plant; this defense response, designated as induced systemic resistance (ISR), plays an important role in development of disease resistance.19 The onset of ISR in plants correlates with accumulation of phytoalexins and increased activity of PR proteins such as chitinases, β-1,3-glucanases and peroxidases;2023 consequently, PR proteins are generally used as ISR markers.19 The classical inducers of ISR include both biotic and abiotic factors, including disease causing microorganisms themselves,24,25 plant growth promoting rhizobacteria,22,26 chemicals27,28 and natural plant products.7,10,12,13,29,30 Plant products have been considered as one of the major groups of compounds that induce ISR. To date, extracts of at least a few plant species have been reported to contain allelopathic substances which can act as elicitors and induce systemic resistance in host plants resulting in reduction or inhibition of disease development.7,10,12,13In the present study, with the objective of understanding the mechanisms of disease suppression by leaf extracts of Z. jujuba and I. carnea, we investigated their ability to induce ISR in rice by analyzing the activities of ISR markers including PR-proteins and other defense enzymes involved in phenylpropanoid metabolism. The changes in activities of chitinase, β-1,3-glucanase, peroxidase, phenylalanine ammonia-lyase (PAL) and phenolic compounds induced in rice seedlings that were elicited with leaf extracts (at 1:10 dilution; w/v) of Z. jujuba or I. carnea and infected with R. solani were analyzed, and compared to changes in non-elicited and uninfected seedlings. Rice seedlings that were both elicited with leaf extracts of Z. jujuba or I. carnea and infected with R. solani accumulated significantly higher levels (2–5-fold) of ISR markers as compared to non-elicited and/or uninfected seedlings (Fig. 1). About two-fold increase in activities of ISR markers was also observed in seedlings that were either infected but not elicited or elicited but not infected; however, this increase was significantly lower than the changes in seedlings that were both elicited and infected (Fig. 1). Although the activity of all ISR markers began to increase around or after 24 h post-infection, at least two distinct induction patterns were observed. For instance, the activities of chitinase and phenolic substances gradually increased to reach maximum levels at 164 h post-infection (Fig. 1A and E); whereas, the activities of β-1,3-glucanase, peroxidase and PAL reached maximum levels at 72 to 96 h post-infection and decreased thereafter (Fig. 1B–D). The leaf extracts of Z. jujuba were found slightly more effective in inducing ISR markers than the leaf extracts of I. carnea. There was no significant change in the activity of ISR markers in control seedlings sprayed with sterile distilled water (Fig. 1). Collectively, these results suggested that the leaf extracts of Z. jujuba and I. carnea have the ability to induce systemic resistance in rice seedlings infected with R. solani. The fungitoxicity of the leaf extracts of Z. jujuba and I. carnea 7 combined with their ability to elicit ISR is possibly responsible for low sheath blight disease incidence observed in rice seedlings treated with these leaf extracts.7Open in a separate windowFigure 1Activity of ISR markers and defense-related compounds in rice seedlings elicited with the leaf extracts of Zizyphus jujuba or Ipomoea carnea and challenge inoculated with Rhizoctonia solani. Total activity of chitinase (A), β-1,3-glucanase (B), peroxidase (C) phenylalanine ammonia-lyase (PAL; D) and phenolic substances (E) was analyzed in rice seedlings. The inoculation of rice seedlings with R. solani was performed 45 days after planting. Spraying of leaf extracts (1:10 dilution; w/v) of Z. jujuba or I. carnea was performed two days prior to inoculation. Tissue samples (sheath) from elicited and/or infected seedlings were collected for analysis at various time intervals.The in vitro antimicrobial and in vivo disease inhibitory effects of natural plant products are generally attributed to the allelopathic substances present in them. However, very few attempts have been made to purify and characterize active principles from bio-active natural plant products. We have previously identified a withanolide compound from leaf extracts of D. metel which exhibited antibacterial activity against Xoo.7 Both Z. jujuba and I. carnea are rich source of secondary metabolites including alkaloids, terpenoids, flavonoids and phenolic compounds.3135 To determine the composition of bio-active ingredients within the leaf extracts of Z. jujuba and I. carnea, we performed thin layer chromatographic separation of alkaloid, terpenoid and phenolic compounds. The partially purified compounds, as reported in
Leaf extractRf valueAnti-fungal activity against R. solani*
VisibleIodine vaporsUV-lightSpray reagent
Phenolic substances1
Z. jujuba0.6960.696-0.696-
I. carnea-0.807-0.807-
Terpenoid compounds2
Z. jujuba---0.189-
0.3580.3580.3580.3585.1 mm
---0.4463.7 mm
I. carnea-0.5900.5900.590-
Alkaloid compounds3
Z. jujuba-0.784-0.7845.1 mm
I. carnea-0.806-0.806-
Open in a separate window*Inhibition zone diameter (mm) as mean of triplicate tests.1Solvent-acetic acid:chloroform (1:9); Spray reagent-Diazotised sulphanilic acid.2Solvent-methanol:chloroform (2:9); Spray reagent-10% vanillin-sulphuric acid.3Solvent-methanol:chloroform (1:1); Spray reagent-Drag endorffs reagent.In conclusion, our results together with several other reports in the literature have established that natural plant products possess antimicrobial substances that can inhibit the growth of the pathogens and augment disease resistance capability of plants by eliciting ISR in host plants. In the immediate future, identification and characterization of additional novel bio-active compounds from natural plant products is essential for developing commercial formulations of potential use in controlling pathogenic diseases in crop plants.Rice cultivar, IR-50 (susceptible to sheath blight) and virulent isolate of R. solani (RS7 Anastamosis group AG1),36 were used in all experiments. The leaf tissues of Z. jujuba and I. carnea were collected from local areas around Coimbatore, India and aqueous extracts were prepared, as described previously in reference 7. Forty-five-day-old rice seedlings were sprayed with either aqueous leaf extracts (1:10 dilution) or sterile distilled water, two-days prior to inoculation with sclerotia of R. solani.37 Sheath tissues from infected seedlings were collected at various time intervals, including 0, 24, 48, 72, 96 and 164 h after pathogen inoculation. The changes in the chitinase and peroxidase activities were determined by colorimetric assays, as described previously by Boller and Mauch,38 and Hammerschmidt et al.39 respectively. β-1,3-glucanase activity was assayed by the laminarin-dinitrosalicylic acid method.40 PAL activity was determined as the rate of conversion of L-phenylalanine to trans-cinnamic acid at 290 nm as described by Dickerson et al.41 The amount of trans-cinnamic acid synthesized was calculated using its extinction coefficient of 9,630 M−1. Estimation of phenolic substances was carried out as described previously in reference 7.TLC was carried out on 20 × 20 cm glass plate coated with0.5 mm thickness silica gel. Twenty microliters of Z. jujuba and I. carnea leaf extracts (1 g/ml) were spotted on each plate. The mixture of solvents comprising acetic acid:chloroform (1:9), methanol:chloroform (2:9) or methanol:chloroform (1:1) were used to develop the chromatograms for detection of phenolic, terpenoid or alkaloid compounds, respectively. The developed chromatograms were observed under visible, UV light and after exposing to iodine vapours. Additionally, the chemical class specific visualization spray reagents were used for detection of phenolic substances (Diazotized sulphanilic acid), terpenoids (10% vanillin-sulphuric acid) and alkaloids (Dragendorffs reagent). Preparative TLC was carried out using 2 mm thickness silica gel. The Rf value of each spot detected on the chromatogram was recorded. The silica gel corresponding to each spot was scraped off and the chemical compound was eluted using sterile water. The eluted compound was tested for its antimicrobial activity using the inhibition zone technique.42  相似文献   

17.
Fungicidal control of Rhizoctonia solani in soil amended with organic manures     
R. BANDYOPADHYAY  J. P. S. YADAV  H. R. KATARIA  R. K. GROVER 《The Annals of applied biology》1982,101(2):251-259
Amendments of nutrient-deficient soil with three organic manures and one non-edible oil-cake reduced the disease controlling potential of methoxyethyl mercury chloride (MEMC), quintozene and carbendazim used as seed treatments on cowpea and cotton against seedling rot caused by Rhizoctonia solani. Biogas sludge (BGS) and farm yard manure (FYM) nullified the activity of MEMC and quintozene and reduced markedly the efficacy of carbendazim. Humic acid extracted from BGS inactivated MEMC and carbendazim but had little effect on quintozene. Green manure (Sesbania aculeata) slightly reduced the efficacy of MEMC only. Soil amendment with mahua (Madhuca indica) cake and soil drench with its aqueous extract greatly reduced the efficacy of the three fungicides.  相似文献   

18.
Powder formulation of Burkholderia cepacia for control of rape seed damping-off caused by Rhizoctonia solani     
Sharifi-Tehrani A  Ahmadzadeh M  Sarani S  Farzaneh M 《Communications in agricultural and applied biological sciences》2007,72(2):129-136
Talc-based formulation of Burkholderia cepaci strain Bu1 was tested as seed and soil drenchs separately for its ability to control Rhizoctonia soloni the causal agent of rape seed damping-off in greenhouse and field trials. In general, the formulated bacteria was more effective to suppress the disease than the suspension of bacteria cells in carboxymethylcellulose solution (1% w/v), in both greenhouse and field trials. The formulation of strain Bul as soil and seed treatments had the greatest effect on reducing the rape seed damping-off in greenhouse and field trials (66.7, 53.3, 64.4 and 40% respectively). The formulation of strain Bu1 as soil and seed treatments were the most effective treatments to increase the root dry weights in the infected soil in greenhouse. The formulation of strain Bul as soil drench had the greatest effect on enhancement of the fresh weight of roots and stem fresh and dry weights. The formulation of strain Bu1 stored at 4 degrees C exhibited better shelf Life and efficacy in vitro than it's counterpart stored at 25 degrees C.  相似文献   

19.
Influence of bio-inoculants on the control of root rot and wilt disease of pyrethrum caused by Rhizoctonia solani     
Abdul-Khaliq  A. Sattar  H. N. Singh 《Archives Of Phytopathology And Plant Protection》2013,46(15):1490-1500
The effect of four bio-inoculants namely, Glomus aggregatum, Streptomyces sp., Bacillus subtilis and Trichoderma harzianum and a fungicide, Ridomil-mancozeb was evaluated on the biomass production and control of root rot and wilt disease under glasshouse conditions. Results showed that 21-day- prior inoculation with G. aggregatum was most effective where none of the treated plants produced disease symptoms and interestingly their growth was increased by 39.4%. The colonisation by G. aggregatum (>80%) also increased P concentration in shoot. While, similar treatment with Streptomyces sp., B. subtilis, T. harzianum and Ridomil-mancozeb individually failed to produce any significant effect over Rhizoctonia solani inoculated control, where all inoculated plant died, prematurely. The simultaneous and 3-day-post treatments of G. aggregatum were non-effective but simultaneous treatment with Streptomyces sp. produced 70% disease control, while B. subtilis and T. harzianum individually provided 50% control. Their effects were either better or at par when compared with the simultaneous treatment of Ridomil-mancozeb. In 3-day-post treatment, Streptomyces, B. subtilis and Ridomil-mancozeb individually provided 50% disease control, whereas T. harzianum was least effective as it could protect only 25% plants against infection. The results reveals that 15 days prior treatment of G. aggregatum can significantly controls the root rot and wilt disease of pyrethrum. Further, treatment of Streptomyces can also serve the next effective post infection control method.  相似文献   

20.
Enzyme Production by the Mycoparasite Verticillium biguttatum against Rhizoctonia solani     
McQuilken MP  Gemmell J 《Mycopathologia》2004,157(2):201-205
Verticillium biguttatum, a mycoparasite of the ubiquitous soil-borne plant pathogen Rhizoctonia solani, excreted chitinase and beta-1,3-glucanase into liquid medium when grown on laminarin and chitin, respectively. Neither chitinase nor beta-1,3-glucanase was produced by the mycoparasite when grown on cell walls of two isolates of R. solani representing anastomosis groups (AG)-3 and AG-8. Extracellular protease was induced by growth on cell walls of the pathogen, whereas beta-1,3-glucanase and chitinase were produced bound to the cell wall of V. biguttatum. This is the first report of chitinase, beta-1,3-glucanase and protease production by V. biguttatum. These enzymes may play a previously unforeseen role in dissolving and penetrating the cell walls of R. solani.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号