首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
嗜热真菌DSM10635生产耐热木聚糖酶的小试研究   总被引:3,自引:0,他引:3  
应用嗜热真菌Thermomyces lanuginosus DSM10635,采用固体发酵的方法探索耐热木聚糖酶的优化生产条件。在研究玉米芯,玉米皮,玉米秆,麸皮,松树屑,桦树屑等不同底物,在不同温度、玉米芯颗粒大小以及料水比条件下培养比较酶产量后,发现该嗜热真菌产耐热木聚糖酶的最佳底物为玉米芯或玉米皮,最佳培养温度为50℃--55℃,在加水量为1份玉米芯:2.8份水,玉米芯的颗粒直径大约为1mm时产酶量最高。实验结果显示,嗜热真菌DSM10635在优化后的培养条件下木聚糖酶产量可达到12525.80IU/g玉米芯。  相似文献   

2.
The thermostability of the endo-beta-1,4-xylanase from Thermomyces lanuginosus (xynA) was improved by directed evolution using error-prone PCR. Transformants expressing the variant xylanases were first selected on 0.4% Remazol Brilliant Blue-xylan and then exposed to 80 degrees C. Whereas the wild type XynA lost 90% activity after 10 min at 80 degrees C, five mutants displayed both higher stabilities and activities than XynA. Four mutants were subjected to further mutagenesis to improve the stability and activity of the xylanase. Subsequent screening revealed three mutants with enhanced thermostability. Mutant 2B7-10 retained 71% of its activity after treatment at 80 degrees C for 60 min and had a half-life of 215 min at 70 degrees C, which is higher than that attained by XynA. Sequence analysis of second generation mutants revealed that mutations were not concentrated in any particular region of the protein and exhibited much variation. The best mutant obtained from this study was variant 2B7-10, which had a single substitution (Y58F) in beta-sheet A of the protein, which is the hydrophilic, solvent-accessible outer surface of the enzyme. Most of the mutants obtained in this study displayed a compromise between stability and activity, the only exception being mutant 2B7-10. This variant showed increased activity and thermostability.  相似文献   

3.
Thermomyces lanuginosus strains RT9 and MH4 were studied to find favourable cultivation conditions and to compare their abilities to produce xylanolytic enzymes in three media on different substrates at 50° C or 55° C under shake-culture conditions. Both organisms produced xylanases free of cellulase at widely different levels in all cultivation conditions employed. Wheat bran, corn cobs and xylan induced xylanases in increasing order of producing with both cultures. T. lanuginosus RT9 demonstrated the highest xylanase production in all cultivation conditions but with lower soluble protein, reducing sugar, -xylosidase and debranching enzymes levels (arabinosidase, acetylxylanesterase, mannanase) when compared to T. lanuginosus MH4. The study reveals that xylanase production was highly influenced by nitrogen sources and their concentrations and by the initial pH in the cultures. The two strains may therefore be unique, when technical application is considered in terms of the quantity and quality of the xylanolytic enzymes produced.  相似文献   

4.
5.
绵毛嗜热丝孢菌木聚糖酶的纯化与性质   总被引:2,自引:0,他引:2  
研究了绵毛嗜热丝孢菌Thermomyces lanuginosus W205胞外木聚糖酶的纯化与性质。粗酶液经硫酸铵沉淀和Q-Sepharose FF离子交换层析即可得到电泳纯木聚糖酶,回收率为46.6%,比酶活为1396.9U/mg。该酶的最适pH和最适温度分别为pH7.0和75℃,pH稳定范围为5.5-10.8,70℃处理30min残存酶活在70%以上。薄层层析结果显示该酶水解桦木木聚糖的主要产物是木二糖和木三糖,并且能够通过转糖苷作用将木三糖转化为木二糖。该木聚糖酶易于纯化并且具有较宽的pH稳定性及良好的热稳定性,具有较大的潜在工业应用价值。  相似文献   

6.
疏绵状嗜热丝孢菌热稳定几丁质酶的纯化及其性质研究   总被引:6,自引:1,他引:6  
采用硫酸铵沉淀、DEAE SepharoseFastFlow阴离子层析、Phenyl Sepharose疏水层析等步骤获得了凝胶电泳均一的疏绵状嗜热丝孢菌 (Thermomyceslanuginosus)几丁质酶。经SDS PAGE和凝胶过滤层析测得纯酶蛋白的分子量在 4 8~ 4 9 .8kD之间。该酶反应的最适温度和最适pH分别为 5 5℃和 4 5 ,在pH4 5条件下 ,该酶在 5 0℃以下稳定 ;6 5℃的半衰期为 2 5min ;70℃保温 2 0min后 ,仍保留 2 4 %的酶活性。其N 端氨基酸序列为AQGYLSVQYFVNWAI。金属离子对几丁质酶的活性影响较大 ,Ca2 、Na 、K 、Ba2 对酶有激活作用 ;Ag 、Fe2 、Cu2 、Hg2 对酶有显著的抑制作用 ;以胶体几丁质为底物的Km 和Vmax值分别为 9 .5 6mg mL和 2 2 . 12 μmol min。抗菌活性显示 ,该酶对供试病原菌有不同程度的抑制作用。  相似文献   

7.
8.
Thermomyces lanuginosus: properties of strains and their hemicellulases   总被引:9,自引:0,他引:9  
The non-cellulolytic Thermomyces lanuginosus is a widespread and frequently isolated thermophilic fungus. Several strains of this fungus have been reported to produce high levels of cellulase-free beta-xylanase both in shake-flask and bioreactor cultivations but intraspecies variability in terms of beta-xylanase production is apparent. Furthermore all strains produce low extracellular levels of other hemicellulases involved in hemicellulose hydrolysis. Crude and purified hemicellulases from this fungus are stable at high temperatures in the range of 50-80 degrees C and over a broad pH range (3-12). Various strains are reported to produce a single xylanase with molecular masses varying between 23 and 29 kDa and pI values between 3.7 and 4.1. The gene encoding the T. lanuginosus xylanase has been cloned and sequenced and is shown to be a member of family 11 glycosyl hydrolases. The crystal structure of the xylanase indicates that the enzyme consists of two beta-sheets and one alpha-helix and forms a rigid complex with the three central sugars of xyloheptaose whereas the peripheral sugars might assume different configurations thereby allowing branched xylan chains to be accepted. The presence of an extra disulfide bridge between the beta-strand and the alpha-helix, as well as to an increase in the density of charged residues throughout the xylanase might contribute to the thermostability. The ability of T. lanuginosus to produce high levels of cellulase-free thermostable xylanase has made the fungus an attractive source of thermostable xylanase with potential as a bleach-boosting agent in the pulp and paper industry and as an additive in the baking industry.  相似文献   

9.
A thermostable superoxide dismutase (SOD) from a Thermomyces lanuginosus strain (P134) was purified to homogeneity by fractional ammonium sulfate precipitation, ion-exchange chromatography on DEAE-Sepharose, Phenyl-Sepharose hydrophobic interaction chromatography, and gel filtration on Sephacryl S-100. The molecular mass of a single band of the enzyme was estimated to be 22.4 kDa, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using gel filtration on Sephacryl S-100, the molecular mass was estimated to be 89.1 kDa, indicating that this enzyme was composed of four identical subunits of 22.4 kDa each. The SOD was found to be inhibited by NaN3, but not by KCN or H2O2, suggesting that the SOD in T. lanuginosus was of the manganese superoxide dismutase type. The SOD exhibited maximal activity at pH 7.5. The optimum temperature for the activity was 55°C. It was thermostable at 50 and 60°C and retained 55% activity after 60 min at 70°C. The half-life of the SOD at 80°C was approximately 28 min and even retained 20% activity after 20 min at 90°C.  相似文献   

10.
Glucoamylase (1,4-alpha-D-glucan glucohydrolase, EC 3.2.1.3) was purified from the culture filtrates of the thermophilic fungus Thermomyces lanuginosus and was established to be homogeneous by a number of criteria. The enzyme was a glycoprotein with an average molecular weight of about 57 000 and a carbohydrate content of 10-12%. The enzyme hydrolysed successive glucose residues from the non-reducing ends of the starch molecule. It did not exhibit any glucosyltransferase activity. The enzyme appeared to hydrolyse maltotriose by the multi-chain mechanism. The enzyme was unable to hydrolyse 1,6-alpha-D-glucosidic linkages of isomaltose and dextran. It was optimally active at 70 degrees C. The enzyme exhibited increase in the Vmax. and decreased in Km values with increasing chain length of the substrate molecule. The enzyme was inhibited by the substrate analogue D-glucono-delta-lactone in a non-competitive manner. The enzyme inhibited remarkable resistance towards chemical and thermal denaturation.  相似文献   

11.
根据Thermomyces lanuginosus热稳定几丁质酶Chit的N-端氨基酸序列和同源保守序列设计简并引物,通过RT-PCR及快速扩增cDNA末端(RACE)的方法,克隆了该几丁质酶的编码基因chit,全长cDNA为1500bp,包含一个由442个氨基酸组成的开放阅读框。该基因已在GenBank中注册,登录号为DQ092332。将成熟肽几丁质酶Chit阅读框与酵母表达载体pPIC9K连接,构建重组质粒pPIC9K/chit,转化毕赤酵母GS115,在甲醇的诱导下,成功地分泌出具生物活性的几丁质酶,诱导6d后酶活性达2.261U/mL,酶蛋白表达量为0.36mg/mL。该酶的最适反应温度和pH值分别为60℃和5.5,该酶在50℃以下稳定;65℃的半衰期为40min。  相似文献   

12.
Thermomyces lanuginosus strains from different culture collections, namely ATCC 26909, ATCC 22083, DEN 1457, IMI 84400 and BS1 were compared for xylanase production, and isozyme profile. Of all the strains of T. lanuginosus, BS1 a soil isolate produced the largest amount of xylanase. All strains were found to produce two forms of xylanase (I & II) with molecular mass corresponding to 25.0 and 54.0 KDa. The u.v/NTG mutagenesis of T. lanuginosus BS1 aleurospores/protoplasts resulted in xylanase-hyperproducing mutants. A morphological colour mutant RB 524 produced approximately 2.5-fold higher xylanase (2506.0 units/ml) as compared to the parent strain (1018.1 units/ml).  相似文献   

13.
The thermostability of beta-xylanases produced by nine thermophilic Thermomyces lanuginosus strains in a coarse corn cob medium was assessed. The xylanase produced by T. lanuginosus strain SSBP retained 100% of its activity after 6 h at temperatures up to 65 degrees C. In comparison seven ATCC strains and the DSM 5826 strain of T. lanuginosus only retained 100% xylanase activity at temperatures up to 60 degrees C. Culture filtrates of T. lanuginosus strain SSBP grown on coarse corn cobs, oatspelts xylan, birchwood xylan, wheatbran, locust beangum, and sugar cane bagasse, retained 100% xylanase activity at temperatures up to 60 degrees C. The xylanase produced on corn cobs was the most thermostable and showed an increase of approximately 6% from 70 degrees C to 80 degrees C. The T(1/2) of all strains at 70 degrees C at pH 6.5 varied greatly from 63 min for strain ATCC 28083 to 340 min for strain SSBP. The xylanase of strain SSBP was much less thermostable at pH 5.0 and pH 12.0 with T(1/2) values of 11.5 min and 15 min, respectively at 70 degrees C. At 50 degrees C, the enzyme of T. lanuginosus strain SSBP produced on coarse corn cobs was stable within the pH range of 5.5-10.0. Furthermore, the enzyme retained total activity at 60 degrees C for over 14 days and at 65 degrees C for over 48 h. The xylanase of T. lanuginosus strain SSBP possesses thermo- and pH stability properties that may be attractive to industrial application.  相似文献   

14.
A xylanase produced by Thermomyces lanuginosus 195 by solid state fermentation (SSF) was purified 9.3-fold from a crude koji extract, with a 7.6% final yield. The purified xylanase (with an estimated mass of 22 kDa by SDS-PAGE) retained 18% relative activity when treated for 10 min at 100 °C and approximately 90% relative activity when incubated at pH values ranging from 6 to 10. Xylanase activity in the purified preparation was significantly enhanced following treatment with manganese and potassium chlorides (p < 0.05) but significantly reduced by calcium, cobalt and iron (p < 0.05). The purified enzyme was also shown to be exclusively xylanolytic. The gene encoding xylanase activity from T. lanuginosus 195 was functionally expressed by Pichia pastoris. MALDI-ToF mass spectrometry and zymography were employed to confirm functional recombinant expression. Maximum xylanase titres were achieved following 120 h induction of the recombinant culture, yielding 26.8 U/mL. Achieving functional protein expression facilitates future efforts to optimise the cultivation conditions for heterologous xylanase production.  相似文献   

15.
Thermomyces lanuginosus is a thermophilic fungus known for its ability to produce industrially important enzymes including large amounts of xylanase, the key enzyme in hemicellulose hydrolysis. The secretome of T. lanuginosus SSBP was profiled by shotgun proteomics to elucidate important enzymes involved in hemicellulose saccharification and to characterise the presence of other industrially interesting enzymes. This study reproducibly identified a total of 74 proteins in the supernatant following growth on corn cobs. An analysis of proteins revealed nine glycoside hydrolase (GH) enzymes including xylanase GH11, β-xylosidase GH43, β-glucosidase GH3, α-galactosidase GH36 and trehalose hydrolase GH65. Two commercially produced Thermomyces enzymes, lipase and amylase, were also identified. In addition, other industrially relevant enzymes not currently explored in Thermomyces were identified including glutaminase, fructose-bisphosphate aldolase and cyanate hydratase. Overall, these data provide insight into the novel ability of a cellulase-free fungus to utilise lignocellulosic material, ultimately producing a number of enzymes important to various industrial processes.  相似文献   

16.
The ability of 144 Thermomyces lanuginosus wild strains isolated from biohumus, mushroom and garden composts, decayed leaves, hazelnuts, and raw coffee beans to hydrolyze synthetic (tributyrin, Tween 20, Tween 40, Tween 60, and Tween 80) and natural fatty substrates (sunflower, soybean, rapeseed and corn oil) was evaluated, and whether the lipolytic activity depended on the isolation source determined. All strains incubated at 55 °C on solid media containing 1% synthetic and 15% natural fatty substrates hydrolyzed both types of substrate. Mean lipolytic activity on natural substrates was significantly higher than on synthetic substrates. The highest mean activity index was noted after growth on sunflower oil, followed by soybean oil and tributyrin; indices on other fatty substrates were low. Strains isolated from raw coffee beans showed the highest mean index, followed by those from biohumus and garden compost; the lowest index being for strains isolated from hazelnuts. Thus, the lipolytic activity index depended on the specific fatty substrate and the source of the isolates.  相似文献   

17.
Summary The pH-value and the stirrer speed during cultivation of the thermophilic fungus Thermomyces lanuginosus were found to have a pronounced influence on xylanase production using corn cobs as carbon source. The highest xylanase activity of 32500 nkat/ml was produced in labscale fermentation within 118 hours at a stirrer speed of 50 rpm and a controlled pH-value of 7.5.  相似文献   

18.
Ten different strains of Thermomyces lanuginosus, isolated from composting soils were found to produce phytase when grown on PSM medium. The wild type strain CM was found to produce maximum amount ofphytase (4.33 units/g DW substrate). Culturing T. lanuginosus strain CM on medium containing wheat bran and optimizing other culture conditions (carbon source, media type, nitrogen source, level of nitrogen, temperature, pH, inoculum age, inoculum level and moisture), increased the phytase yield to 13.26 units/g substrate. This culture was further subjected to UV mutagenesis for developing phytase hyperproducing mutants. The mutant (TL-7) showed 2.29-fold increase in phytase activity as compared to the parental strain. Employing Box-Behnken factor factorial design of response surface methodology resulted in optimized phytase production (32.19 units/g of substrate) by mutant TL-7. A simple two-step purification (40.75-folds) ofphytase from mutant TL-7 was achieved by anion exchange and gel filtration chromatography. The purified phytase (approximately 54 kDa) was characterized to be optimally active at pH 5.0 and temperature 70 degrees C, though the enzyme showed approximately 70% activity over a wide pH and temperature range (2.0-10.0 and 30-90 degrees C, respectively). The phytase showed broad substrate specificity with activity against sodium phytate, ADP and riboflavin phosphate. The phytase from T. lanuginosus was thermoacidstable as it showed up to 70% residual activity after exposure to 70 degrees C at pH 3.0 for 120 min. The enzyme showed Km 4.55 microM and Vmax 0.833 microM/min/mg against sodium phytate as substrate.  相似文献   

19.
Amylase hyper-producing, catabolite-repression-resistant, recombinant strains were produced by intraspecific protoplast fusion of thermophilic fungus Thermomyces lanuginosus strains, using well-characterized, morphological, and 2-deoxy-D-glucose resistant markers. The fusant heterokaryons exhibited enhanced amylase activities as compared to the amylase hyper-producing parental strain (T2). Diploids derived from heterokaryons segregated to stable haploid recombinant strains. In the haploid strain (Tlh 4q), approximately 5-fold higher specific activities of alpha-amylase and glucoamylase in the culture filtrate were observed as compared to the wild-type strain (W0).  相似文献   

20.
Ten strains of Thermomyces lanuginosus from various culture collections were evaluated for extracellular endo‐β‐1,4‐xylanase production. The best xylanase producer (5771±173 nkat/mL) T. lanuginosus SK, was subjected to UV and N‐methyl‐N‐nitro‐N‐nitrosoguanidine mutagenesis. A mutant strain T. lanuginosus MC134, that showed on oatspelts xylan a 1.5 fold higher xylanase production than the parent strain SK, was subjected to a study of the regulation of xylanase synthesis during growth on various carbohydrates and during induction in glucose‐grown cells. In the growth experiments the highest production of xylanase was observed in the presence of xylans, however, an appreciable amount of the enzyme, about 10%, was also produced during growth on xylose. Xylobiose was found to be the most efficient xylanase inducer in the glucose‐grown cells. Its induction efficiency was followed by xylose, beechwood and birchwood xylan. Xylanase induction by polysaccharides started several hours later but proceeded for a longer time than that induced by the low molecular mass inducers, indicating that the polysaccharides serve as more sustainable source of inducers and that they have to be first hydrolyzed by the low level of constitutively synthesized xylanase. The repression of the induction of xylanase by glucose confirmed that the xylanase synthesis in the mutant strain is similar to the parent strain and exhibits an induction‐repression regulation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号