首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lysosomes contain enzymatic activities capable of degrading nucleic acids to their constituent nucleosides, but the manner by which these degradation products are released from the lysosome is unknown. To investigate this process, human fibroblast lysosomes, purified on Percoll density gradients, were incubated with [3H]adenosine at pH 7.0, and the amount of adenosine taken up by the lysosomes was measured. Adenosine uptake by fibroblast lysosomes attained a steady state by 12 min at 37 degrees C and was unaffected by the presence of 2 mM MgATP or changes in pH from 5.0 to 8.0. An Arrhenius plot was linear with an activation energy of 12.9 kcal/mol and a Q10 of 2.0. Lysosomal adenosine uptake is saturable, displaying a Km of 9 mM at pH 7.0 and 37 degrees C. Various nucleosides and the nucleobase, 6-dimethylaminopurine, strongly inhibit lysosomal adenosine uptake, whereas neither D-ribose or nucleotide monophosphates have any significant effect upon lysosomal adenosine uptake. On a molar basis, purines are recognized more strongly than pyrimidines. Changing the nature of the nucleoside sugar from ribose to arabinose or deoxyribose has little effect on reactivity with this transport system. The known plasma membrane nucleoside transport inhibitors, dipyridamole and nitrobenzylthioinosine, inhibit lysosomal nucleoside transport at relatively low concentrations (25 microM) relative to the Km of 9 mM for lysosomal adenosine uptake. The half-times of [3H]inosine and [3H]uridine efflux from fibroblast lysosomes ranged from 6 to 8 min at 37 degrees C. Trans effects were not observed to be associated with either inosine or uridine exodus. In contrast to adenosine uptake, adenine primarily enters fibroblast lysosomes by a route not saturable by high concentrations of various nucleosides. In conclusion, the saturability of lysosomal adenosine uptake and its specific, competitive inhibition by other nucleosides indicate the existence of a carrier-mediated transport system for nucleosides within fibroblast lysosomal membranes.  相似文献   

2.
Lysosomes constitute only 4% of the intracellular volume of a normal human fibroblast. When human fibroblasts are incubated for 2-5 min with 20 microM [35S]cystine in Krebs-Ringer phosphate solution at pH 7.4, a minimum of 50-60% of the total radioactivity taken up by the cells is found sequestered into the lysosomal compartment in the form of cysteine. A lysosomal transport system, highly specific for cysteine, appears to facilitate this rapid lysosomal cysteine sequestration. Time courses of [35S]cysteine uptake into isolated, Percoll-purified fibroblast lysosomes at pH 7.0 and 37 degrees C are linear for the first 4-5 min and attain a steady state by 10 min. Lysosomal cysteine uptake displays a Km of 0.05 mM at pH 7.0 and an activation energy of 21 kcal/mol, corresponding to a Q10 of 3.2. The role of this transport system in delivering cysteine into lysosomes is supported by its pH curve showing a slow rate of cysteine transport at the acidic pHs between 5 and 6, but then increasing sevenfold between pH 6 and 7.5 to be maximally active near the cytosolic pH of 7. Carrier mediation by this lysosomal transport route demonstrates a high specificity for cysteine as indicated by the inability of the following amino acids to significantly inhibit at 5 mM the lysosomal uptake of 0.035 mM [35S]L-cysteine: ala, ser, pro, val, gly, homocysteine, D- or L-penicillamine, arg, asp, or leu. Similarly, D-cysteine and beta-mercaptopropionate were poor inhibitors, suggesting that both the L-isomer and alpha-amino group of cysteine appear to be required for recognition by the cysteine-specific transport system. In contrast, cysteamine, which lacks an alpha-carboxyl group, was able to strongly inhibit lysosomal cysteine uptake. The physiological importance of this cysteine-specific lysosomal transport system may be to aid lysosomal proteolysis by delivering cysteine into the lysosomal compartment to (a) maintain the catalytic activity of the thiol-dependent lysosomal enzymes and (b) break protein disulfide bridges at susceptible linkages, thereby allowing proteins to unfold, facilitating their degradation.  相似文献   

3.
When isolated human fibroblast lysosomes are incubated with 4 microM [32P]phosphate at pH 7.0, orthophosphate is transported into lysosomes and is rapidly incorporated into low and high molecular weight products. We have characterized the high molecular weight (HMW) lysosomal material into which [32P]phosphate is incorporated and have found it to consist of long chains of inorganic polyphosphate based on the following observations. 1) greater than 97% of HMW 32P-lysosomal material is converted to [32P]orthophosphate when incubated with 1 N HCl for 20 min at 100 degrees C. 2) Incubation of HMW 32P-lysosomal material at pH 7.0 and 65 degrees C for 96 h results in the formation of [32P]trimetaphosphate, which is known to be produced only from linear chains of polyphosphate under these conditions. 3) HMW 32P-lysosomal material is resistant to degradation by proteinase K, ribonuclease, and deoxyribonuclease and extracts into the aqueous phase during phenol/chloroform extractions. 4) HMW 32P-lysosomal material displays heterogeneous mobility on polyacrylamide gels with most chains ranging in length from 100 to at least 600 phosphate residues. 5) HMW 32P-lysosomal material is partially hydrolyzed under alkaline conditions to yield a continuous ladder of polyphosphate species differing by one or several residues in length on polyacrylamide gels.  相似文献   

4.
Membrane vesicles were isolated from purified liver lysosomes of rats treated with Triton WR-1339. In order to preserve ATP-dependent acidification activity, proteolysis of membranes was minimized by adding protease inhibitors and by centrifuging to form dilute bands of vesicles rather than highly concentrated pellets. The membrane vesicle fraction represented about 20% of the total lysosomal protein, 80% of the ATPase activity, and 3% of the solute proteins as marked by N-acetylglucosaminidase. About one-half of the membranes were oriented right side out. The space unavailable to [14C]sucrose corresponded to 3 microliters/mg of membrane protein which indicates that the membranes form vesicles about one-tenth the size of lysosomes. Uptake of either [14C]methylamine or [14C]chloroquine by lysosomal membrane vesicles was ATP-dependent, indicating acidification of the intravesicle space. The acidification activity was inhibited when either 1.5 microM carbonyl cyanide p-trifluoromethoxy-phenylhydrazone, 100 microM dicyclohexylcarbodiimide, or millimolar concentrations of such permeant weak bases as ammonium sulfate and dansyl cadaverine were added. Acidification of lysosomal vesicles by ATP occurred electroneutrally. This acidification activity was not dependent on added salts but was inhibited by the anion transport inhibitors pyridoxal phosphate and diisothiocyanostilbene disulfonic acid, thus suggesting co-transport of protons and anions. Results which indicate that phosphate is the transported anion included (a) ATP-dependent uptake of [32P]phosphate by lysosomal membrane vesicles and (b) stimulation of ATP-dependent acidification of these vesicles by added phosphate. These observations provide further evidence that maintenance of the acid intralysosomal pH necessary for activation of lysosomal hydrolases is due to an ATP-driven proton pump located in the lysosomal membrane.  相似文献   

5.
Normal leucocyte lysosome-rich granular fractions exhibited counter-transport of cystine, confirming that cystine transport across the lysosomal membrane is carrier-mediated. The trans-activation of cystine transport was temperature-dependent but relatively independent of the external Na+ or K+ concentration in phosphate buffer. Counter-transport, measured as uptake of exogenous [3H]cystine, increased with increasing intralysosomal cystine content up to approx. 3 nmol of half-cystine/unit of hexosaminidase activity. The amount of [3H]cystine entering lysosomes loaded with unlabelled cystine decreased when unlabelled cystine was added to the extralysosomal medium. Lysosomal cystine counter-transport was stereospecific for the L-isomer. Cystathionine, cystamine and cysteamine-cysteine mixed disulphide gave evidence of sharing the lysosomal cystine-transport system, although at lower activity than cystine. Other tested amino acids, including arginine, glutamate and homocystine, were inactive in this system. Nine leucocyte lysosome-rich preparations from eight different cystinotic patients displayed virtually no counter-transport of cystine, conclusively establishing that a carrier-mediated system for cystine transport is dysfunctional in cystinotic lysosomes.  相似文献   

6.
[14C]Sucrose, introduced into the cytosol of isolated rat hepatocytes by means of electropermeabilization, was sequestered by sedimentable subcellular particles during incubation of the cells at 37 degrees C. The sedimentation characteristics of particle-associated [14C]sucrose were different from the lysosomal marker enzyme acid phosphatase, suggesting an involvement of organelles of greater size than the average lysosome. Isopycnic banding in isotonic metrizamide/sucrose density gradients resolved two major peaks of radioactivity: a light peak (1.08-1.10 g/ml) coinciding with lysosomal marker enzymes, and a dense peak (1.15 g/ml), coinciding with a mitochondrial marker enzyme. The dense peak was preferentially associated with large-size particles having the sedimentation properties of mitochondria, and it was resistant to the detergent digitonin at a concentration which extracted all of the radioactivity in the light peak. Similarly the autophagy inhibitor 3-methyladenine prevented accumulation of [14C]sucrose in the light peak, while the radioactivity in the dense peak was unaffected. We therefore tentatively conclude that the light peak represents autophagic sequestration of [14C]sucrose into lysosomes (and probably autophagosomes) while the dense peak represents a mitochondrial uptake unrelated to autophagy.  相似文献   

7.
The 3H-labeled prostaglandin D2 [( 3H]PGD2) binding protein in the membrane fraction of mastocytoma P-815 cells was characterized. The specific binding of [3H]PGD2 to the cells or the membranes reached a maximum at pH 5.6, and was saturable, displaceable and of high affinity when incubated at 0 or 37 degrees C. The Bmax values for [3H]PGD2 binding in the two preparations at pH 5.6 were much higher at 0 degrees C than at 37 degrees C, whereas the Kd values were almost equal (85.3 nM for the cells and 80.5 nM for the membranes, respectively). High specific [3H]PGD2 binding activity in the mildly acid-treated cells was still observed when the external pH was raised from 5.6 to 7.2. Furthermore, specific [3H]PGD2 binding to the membranes (at 0 degrees C, pH 5.6) increased on addition of phosphatase inhibitors (NaF and molybdate) in the presence of 10 microM ATP, but practically disappeared on pretreatment of the membranes with phosphatase. On incubation of the membrane with [gamma-32P]ATP and molybdate, the stimulated incorporation of the [32P]phosphate into several peptides, including ones having an Mr of around 100,000-120,000, was observed. These results suggest that [3H]PGD2 binding in the mastocytoma P-815 cell membrane is controlled through phosphorylation-dephosphorylation of the receptor itself.  相似文献   

8.
Unlabeled adenine brought about a (delayed) decrease in radioactivity that had been taken up by phosphate-limited resting cells of Streptomyces griseus from [14C]adenine-labeled adenosine 5'-monophosphate (AMP). Inorganic phosphate, on the other hand, stimulated adenine uptake from AMP, presumably by activating an energy-dependent active transport mechanism. Unlabeled phosphate rapidly diluted the uptake of radioactivity from [32P]AMP. Adenine inhibited uptake of [32P]AMP but not that of [32P]orthophosphate; adenine is thought to act by inhibiting the cleavage of AMP. The uptake of 32P and 14C from double-labeled AMP showed marked differences; 32P was taken up much faster into both cells and nucleic acids. These data indicate that uptake of AMP components takes place after extracellular dephosphorylation of the nucleotide.  相似文献   

9.
Metabolism of high-density lipoproteins in cultured rat luteal cells   总被引:1,自引:0,他引:1  
The uptake of cholesterol from high-density lipoproteins (HDL) labeled with 125I and [3H]cholesterol was examined in cultured rat luteal cells. Luteal cells were incubated with labeled HDL, following which the metabolic fate of the apolipoproteins and cholesterol moieties of the receptor-bound HDL were examined. About 50% of the originally bound HDL apolipoproteins were released into the medium in 24 h by a temperature-dependent process while only 5% of the HDL cholesterol was released unmetabolized. Inclusion of unlabeled HDL in the chase incubation resulted in increased release of apolipoprotein-derived radioactive products without significant change in the release of unmetabolized cholesterol. 60% of the apolipoprotein-derived radioactivity could be precipitated with trichloroacetic acid; the remaining trichloroacetic acid-soluble radioactive fraction was identified as [125I]iodotyrosine. Gel filtration chromatography of the chase-released material showed that the trichloroacetic acid-precipitable products, which contained no detectable amounts of cholesterol, eluted over a range of molecular sizes (9-80 kDa). No intact HDL was retroendocytosed. About 80% of trichloroacetic acid-precipitable products could be immunoadsorbed on anti-apolipoprotein A-I antibody immobilized on CNBr-activated Sepharose, suggesting the presence of fragments containing apolipoprotein A-I. This material was also capable of reassociating with native HDL. Lysosomal inhibitors were partially effective in inhibiting the amount of trichloroacetic acid-soluble products formed. The lysosomal degradation appeared to have no role in the uptake of HDL-derived cholesterol. These studies demonstrate preferential and total uptake of HDL cholesterol by luteal cells, with concomitant degradation of the lipoprotein.  相似文献   

10.
The kinetics of [32P]phosphate uptake has been studied in different types of Saccharomyces cerevisiae mitochondria. Mitochondria were isolated from yeast grown aerobically on 2% lactate (Lac-mitochondria), 2% galactose (Gal-mitochondria), 5.4% glucose (Glu-mitochondria) or from yeast grown anaerobically on 2% galactose (Promitochondria). The effect of chloramphenicol was also studied by adding it to the growth medium of yeast grown aerobically on 2% galactose (chloramphenicol-mitochondria).[32P]Phosphate uptake followed an oscillatory pattern in Lac, Gal-mitochondria and Promitochondria.Saturation kinetics were detected in fully differenciated mitochondria and in Promitochondria, but not in chloramphenicol-mitochondria.Glu-mitochondria did not translocate phosphate as shown both by lack of [32P]phosphate uptake and lack of swelling in isoosmotic potassium solution.Repressed yeast cells were incubated in a resting cell medium and mitochondria were isolated at different times of incubation. The rate of respiration and the oligomycin-sensitive ATPase increased during the course of the incubation. After 2h, a mitochondrial mersalyl-sensitive swelling in an isoosmotic potassium phosphate solution was detected.As expected, no increase of the rate of respiration was observed when chloramphenicol was added in the derepression medium. But the oligomycin-sensitive ATPase decreased. Chloramphenicol did not affect the phosphate transport activity as measured by the swelling of mitochondria, but the [32P]phosphate uptake did not follow saturation kinetics. A complete derepression of the inorganic phosphate-carrier activity was achieved by a 4 h incubation of the repressed cells in the presence of chloramphenicol, followed by a 6 h incubation in presence of cycloheximide.These data strongly suggest that the mitochondrial protein-synthesis system is required for the normal function of the inorganic phosphate-carrier.  相似文献   

11.
Brush-border membrane vesicles prepared from rabbit kidney cortex were incubated at 37 degrees C for 30 min with phosphatidylinositol-specific phospholipase C. This maneuver resulted in a release of approx. 85% of the brush-border membrane-linked enzyme alkaline phosphatase as determined by its enzymatic activity. Transport of inorganic [32P]phosphate (100 microM) by the PI-specific phospholipase C-treated brush-border membrane vesicles was measured at 20-22 degrees C in the presence of an inwardly directed 100 mM Na+ gradient. Neither initial uptake rates, as estimated from 10-s uptake values (103.5 +/- 6.8%, n = 7 experiments), nor equilibrium uptake values, measured after 2 h (102 +/- 3.4%) were different from controls (100%). Control and PI-specific phospholipase C-treated brush-border membrane vesicles were extracted with chloroform/methanol to obtain a proteolipid fraction which has been shown to bind Pi with high affinity and specificity (Kessler, R.J., Vaughn, D.A. and Fanestil, D.D. (1982) J. Biol. Chem. 257, 14311-14317). Phosphate binding (at 10 microM Pi) by the extracted proteolipid was measured. No significant difference in binding was observed between the two types of preparations: 31.0 +/- 9.37 in controls and 29.8 +/- 8.3 nmol/mg protein in the proteolipid extracted from PI-specific phospholipase C-treated brush-border membrane vesicles. It appears therefore that alkaline phosphatase activity is essential neither for Pi transport by brush-border membrane vesicles nor for Pi binding by proteolipid extracted from brush-border membrane. These results dissociate alkaline phosphatase activity, but not brush-border membrane vesicle transport of phosphate, from phosphate binding by proteolipid.  相似文献   

12.
(125)I-labelled asialo-fetuin, administered intravenously, rapidly accumulates in rat liver and the radioactivity is subsequently cleared from the liver within 60min. Plasma radioactivity reaches a minimum between 10 and 15 min after injection and rises slightly during the period of liver clearance. Free iodide is the only radioactive compound found in plasma during this latter period. Fractionation of rat liver at 5 and 13min after injection of (125)I-labelled asialo-fetuin supports the hypothesis that asialo-glycoprotein is taken into liver by pinocytosis after binding to the plasma membrane and is then hydrolysed by lysosomal enzymes. At 5min, radioactivity was concentrated 23-fold in a membrane fraction similarly enriched in phosphodiesterase I, a plasma-membrane marker enzyme, whereas at 13min the radioactivity appeared to be localized within lysosomes. Separation of three liver fractions (heavy mitochondrial, light mitochondrial and microsomal) on sucrose gradients revealed the presence of two populations of radioactive particles. One population banded in a region coincident with a lysosomal marker enzyme. The other, more abundant, population of radioactive particles had a density of 1.13 and contained some phosphodiesterase, but very little lysosomal enzyme. These latter particles appear to be pinocytotic vesicles produced after uptake of the asialo-fetuin bound by the plasma membrane. Lysosomal extracts extensively hydrolyse asialo-fetuin during incubation in vitro at pH4.7 and iodotyrosine is completely released from the iodinated glycoprotein. Protein digestion within lysosomes was demonstrated by incubating intact lysosomes containing (125)I-labelled asialo-fetuin in iso-osmotic sucrose, pH7.2. The radioactive hydrolysis product, iodotyrosine, readily passed through the lysosomal membrane and was found in the external medium. These results are not sufficient to account for the presence of free iodide in plasma, but this was explained by the observation that iodotyrosines are deiodinated by microsomal enzymes in the presence of NADPH.  相似文献   

13.
The latency of the alpha-glucosidase activity of intact rat liver lysosomes was studied by using four substrates (glycogen, maltose, p-nitrophenyl, alpha-glucoside, alpha-fluoroglucoside) at a range of substrate concentrations. The results indicate that the entire lysosome population is impermeable to glycogen and maltose, but a proportion of lysosomes are permeable to alpha-fluoroglucoside and a still higher proportion permeable to p-nitrophenyl alpha-glucoside. Incubation at 37 degrees C in an osmotically protected buffer of of pH 5.0 caused lysosomes to become permeable to previously impermeant substrates and ultimately to release their alpha-glucosidase into the medium. The latencies of lysosomal beta-glucosidase and beta-galactosidase were examined by using p-nitrophenyl beta-glucoside and beta-galactoside as substrates. The results indicate permeability properties to these substrates similar to that to p-nitrophenyl alpha-glucoside. On incubation in an osmotically protected buffer of pH 5, lysosomes progressively released their beta-galactosidase in soluble form, but beta-glucosidase remained attached to sedimentable material. Lysosomal beta-glucosidase was inhibited by 0.1% Triton X-100; alpha-glucosidase and beta-galactosidase were not inhibited.  相似文献   

14.
Lysosomal phospholipases A1 and A2 of bovine adrenal medulla   总被引:5,自引:3,他引:2       下载免费PDF全文
1. [(32)P]Lecithin and [(32)P]phosphatidylethanolamine were prepared by incubating rat liver mince with [(32)P]phosphate. With these (32)P-labelled phospholipids conditions for the quantitative assay of phospholipase A activity were established. 2. The distribution of phospholipase A activity between subcellular fractions of the bovine adrenal medulla was determined. Phospholipases A(1) and A(2), with pH optima at 4.2 and 6.5 respectively, were found in the large-granule fraction. By means of sucrose-density-gradient centrifugation it was shown that both these phospholipases were localized in lysosomes. 3. Lysosomal phospholipase A(1) catalysed the hydrolysis of [(32)P]lecithin and [(32)P]phosphatidylethanolamine at the same rate. The enzymic activity was inhibited by 70% in the presence of 10mm-calcium chloride. 4. Lysosomal phospholipase A(2) catalysed the hydrolysis of [(32)P]phosphatidylethanolamine more rapidly than it hydrolysed [(32)P]lecithin. The hydrolysis of [(32)P]phosphatidylethanolamine, but not that of [(32)P]lecithin, by phospholipase A(2) was activated by 0.8mm-calcium chloride. However, the hydrolysis of both substrates was inhibited by 8mm-calcium chloride. 5. The significance of the presence of phospholipase activity in lysosomes is discussed in relation to the functions of lysosomes in general and in the adrenal medulla.  相似文献   

15.
Polyamines stimulate lysosomal cystine transport   总被引:1,自引:0,他引:1  
Lysosomal cystine transport is a carrier-dependent process that, in isolated lysosomes, is stimulated by proton gradients, membrane potential, and millimolar concentrations of divalent cations. The importance of these regulatory factors in vivo is not well established. Polyamines were found to stimulate cystine transport in Percoll gradient purified rat liver lysosomes with spermidine greater than putrescine = cadaverine greater than spermine in order of effectiveness. Maximal stimulation was achieved with 500 microM spermidine. The effects of optimal concentrations of polyamines and divalent cations on cystine transport were not additive. Spermidine stimulated cystine efflux from lysosomes of cultured human diploid fibroblasts, but had no effect on lysosomes of cystinotic fibroblasts which have defective cystine transport. Spermidine did not accumulate within lysosomes in exchange for cystine, had no effect on lysosomal pH, had only slight effects on the lysosomal membrane potential, and had little effect on either methionine or tyrosine efflux. Polyamines are cellular cytoplasmic components that, in physiologic concentrations, stimulate lysosomal cystine transport.  相似文献   

16.
When added to the serum-free medium in which 17.5-day rat yolk sacs were incubated, formaldehyde-denatured 125I-labelled bovine serum albumin was rapidly degraded. More than 80% of the radiolabelled digestion products appearing in the incubation medium consisted of [125I]iodo-L-tyrosine; larger digestion products were found only in association with the yolk-sac tissue. In the early stages of an incubation, low-molecular-weight digestion products began to appear in the incubation medium only after they could be detected within the tissue, and progressive association of trichloroacetic acid-insoluble radioactivity with the tissue preceded both these events. None of the observed proteolysis could be attributed to proteinases released into the incubation medium. Tissue-associated acid-insoluble radioactivity showed a lysosomal distribution on sub-cellular fractionation, and cell-free homogenates of yolk sacs degraded albumin only at acid pH values. Progressively decreasing the rat of pinosome formation (either by progressively lowering the incubation temperature or by the use of increasing concentrations of the metabolic inhibitor rotenone) caused a corresponding decrease in the rate of degradation of albumin. These findings indicate that, in vitro, formaldehyde-denatured 125I-labelled bovine serum albumin is digested by rat yolk sacs exclusively intracellularly, within lysosomes.  相似文献   

17.
Lysosomal transport of monoiodotyrosine was characterized in countertransport experiments using rat FRTL-5 thyroid cell lysosomes. Monoiodotyrosine carrier activity was temperature-dependent (Ea = 11.65 kcal/mol) and had a pH optimum of 7.5. Carrier activity was minimally inhibited by KCl and NaCl, but unaffected by the presence of other ions or ATP. Monoiodotyrosine transport was unaffected by the presence of carbonyl cyanide m-chlorophenylhydrazone, nigericin, or ammonium chloride, indicating that a proton or K+ gradient is not necessary for monoiodotyrosine transport across the lysosomal membrane. Monoiodotyrosine countertransport showed a 6-fold increase in lysosomes from FRTL-5 cells grown in medium containing thyrotropin by comparison to cells grown without this hormone. Thyrotropin responsiveness raised the possibility that monoiodotyrosine was transported by system h, the only known lysosomal carrier whose activity is enhanced by thyrotropin. Consistent with this, monoiodotyrosine-loaded lysosomes exhibited countertransport of [3H]tyrosine, [3H]phenylalanine, and [3H]leucine, three system h ligands, but not [3H]cystine, a nonsystem h ligand. Unlabeled tyrosine, phenylalanine, and leucine, but not cystine or proline, inhibited [125I]monoiodotyrosine countertransport, and leucine inhibition of [3H]tyrosine countertransport and [125I]monoiodotyrosine countertransport yielded virtually identical KI values, 3.5 and 3.2 microM, respectively. Competition studies with monoiodotyrosine analogues showed that system h recognizes a broad range of ligands with an alpha-amino acid configuration at one end and a hydrophobic region at the other. Ring-substituted halogens, regardless of mass or ring position, but not amino, nitro, hydroxy, or methoxy groups, enhanced carrier recognition of system h analogues. It appears that a single system effects the transport of iodinated (e.g. monoiodotyrosine) and noniodinated (e.g. tyrosine) thyroglobulin catabolites into the cytosol for salvage and reutilization by FRTL-5 thyroid cells.  相似文献   

18.
The uptake of [32P]phosphate by human, gel-filtered blood platelets and its incorporation into cytoplasmic ATP and polyphosphoinositides was studied. In unstimulated platelets, uptake was Na+o-dependent and saturable at approximately 20 nmol/min/10(11) cells with a half-maximal rate at 0.5 mM extracellular phosphate. Upon stimulation with thrombin or collagen, net influx of [32P]Pi was accelerated 5- to 10-fold. With thrombin, [32P]Pi efflux was also increased. After the first 2 min, efflux exceeded influx, resulting in the net release of [32P]Pi from the platelets. Since the stimulus-induced burst in [32P]Pi uptake paralleled the secretory responses, it might be an integral part of stimulus-response coupling in platelets. The stimulus-induced burst in net [32P]Pi uptake led to an enhanced labeling of metabolic ATP, which was already detectable at 5 s after stimulation with thrombin. Concomitantly, the incorporation of [32P]Pi into phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was accelerated. The thrombin-induced increase in specific 32P radioactivity of cytoplasmic ATP fully accounted for the simultaneous increase in specific 32P radioactivity of these phosphoinositides. In studying the extent of 32P labeling of phosphorylated compounds in response to a cellular stimulus, it is therefore essential to measure the effect of the stimulus on the specific radioactivity of cytoplasmic ATP.  相似文献   

19.
Treatment of intact human erythrocytes with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) leads to inhibition of anion transport as measured by [32P]phosphate exchange for intracellular chloride. Inhibition is rapid at 37 degrees C (80% inhibition, 1.7 mM NBD-Cl, 3 min, pH 6.9) and not reversed by washing the cells with 1% bovine serum albumin in isotonic sucrose citrate buffer. Pretreatment of cells with N-ethylmaleimide and p-chloromercuribenzenesulfonic acid enhanced transport inhibition by NBD-Cl. Transport inhibition caused by brief incubations of erythrocytes with NBD-Cl could be almost completely reversed with dithiothreitol or beta-mercaptoethanol. Prolonged incubation (60 min, 37 degrees C, pH 6.4, sucrose-citrate buffer) following NBD-Cl treatment leads to partial reversal of transport inhibition. The residual inhibition is then only partially reversed by dithiothreitol treatment. Reversal of transport inhibition of dithiothreitol or beta-mercaptoethanol may be prevented by incubation of the erythrocytes with sodium dithionite. Phosphate transport was readily inhibited by other tyrosine-directed reagents, tetranitromethane (55% inhibition, 1.6 mM, 3 min, 37 degrees C, pH 8.3 in sucrose-citrate medium) and p-nitrobenzene sulfonyl fluoride (31% inhibition, 1.8 mM, 3 min, 37 degrees C, pH 8.1 in sucrose-citrate medium) but not by N-acetylimidazole (10% inhibition, 37.5 mM, 30 min, 37 degrees C, pH 7.5). These results suggest that NBD-Cl inhibits anion exchange by two mechanisms; a rapid inhibition reversible by sulfhydryl reagents, possibly due to modification of a tyrosine residue(s), and a slower irreversible inhibition due to modification of an essential amino group in the transporter.  相似文献   

20.
Phosphate uptake by brush-border membrane (BBM) vesicles prepared from hypophosphatemic mice (Hyp) is reduced by half relative to BBM vesicles from normal mice. To investigate this abnormality, we studied the protein composition of BBM, their capacity to bind inorganic phosphate, and their protein kinase activity with and without the addition of exogenous cAMP, in normal and Hyp mice. Gradient polyacrylamide gel electrophoresis of BBM proteins showed 27 bands which were identical in normal and Hyp mice. Incubation of the membranes with ortho[32P]phosphate at 0 degrees C revealed a phosphate binding protein with an apparent molecular weight (Mr) of 79000, which has been previously identified in rats as the monomer of alkaline phosphatase. In normal mice, the Scatchard plot of phosphate binding was not linear, suggesting heterogeneity of the binding sites with two major components. At high substrate concentrations, the affinity (K) was 1.42 mM and maximal binding (Bmax) was 83 pmol/mg protein. At low substrate concentrations, these values were 0.07 mM and 10.9 pmol/mg, respectively. In Hyp mice BBM, only one binding system was found with K and Bmax values of 0.38 mM and 53.8 pmol/mg. Incubation of the membranes with 25 microM[gamma-32P]ATP resulted in the phosphorylation of 11 proteins. The major band (Mr: 79000) corresponded to the inorganic phosphate binding protein, i.e., to the alkaline-phosphatase monomer. The 11 proteins showed maximal phosphorylation at pH 10. The protein of 79000 Mr showed a second peak of phosphorylation at pH 7.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号