首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circadian rhythm is observed in most of the physiological functions including immune response. The use of animal models other than mammals is useful in understanding how the vertebrate circadian system is organized and how this biological clock has changed throughout the vertebrate evolution. The present study was aimed to examine the circadian variability in the innate immune responses of leukocytes in the freshwater snake, Natrix piscator. Leukocytes were isolated and processed for total and differential leukocyte count, leukocyte phagocytosis, NBT reduction, nitrite production, and lymphocyte proliferation. Experiments were conducted for seven time points at 24, 4, 8, 12, 16, 20, and 24 h in three seasons – summer, winter, and spring. Cosinor analysis revealed that among leukocytes, only lymphocyte count showed circadian variation in summer. Percent phagocytosis and phagocytic index had significant rhythm of 24 h in winter and summer season, respectively. The acrophase of NBT reduction and nitrite release were coming during the evening hours in summer and during morning hours in winter and had circadian rhythmicity. A significant phase shift in nitrite release was observed with a trend of delayed phase shift from winter to summer. Circadian rhythm was also observed in lymphocyte proliferation (basal and concanavalin A stimulated). It is evident from the present study that animals synchronize their immune activity according to the time of the day and season. Enhancement of immune function helps the individual cope with seasonal stressors that would otherwise jeopardize the survival of animal.  相似文献   

2.
The circadian clock in the brain coordinates the phase of peripheral oscillators that regulate tissue-specific physiological outputs. Here we report that circadian variations in the expression and activity of Cu/Zn superoxide dismutase (SOD1; EC 1.15.1.1) are present in liver homogenates from mice. The SOD1 mRNA expression from wild-type (WT) mice peaked at Zeitgeber Time 9 (ZT9; 9 h after lights-on time). While there was no rhythmicity in that from period2 (per2) gene knockout (P2K) mice, the level of SOD1 from per1/per2 double knockout (DKO) mice was significantly elevated at ZT5. The enzyme activity of SOD1 was also rhythmic in the mouse liver. Moreover, the total amount of the SOD1 exhibited a rhythmic oscillation with a peak at ZT9 in the liver from WT mice. We also found that tert-butylhydroperoxide (t-BHP)-induced oxidative damage in both WT and P2K mouse embryonic fibroblast (MEF) cells resulted in the up-regulation of SOD1 levels. Our data suggest that the expression of an important antioxidant enzyme, SOD1, is under circadian clock control and that mice are more susceptible to oxidative stress depending on the time of day.  相似文献   

3.
One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.  相似文献   

4.
The roles of environmental stimuli in initiation and synchronization of circadian oscillation during development appear to vary among different rhythmic processes. In zebrafish, a variety of rhythms emerge in larvae only after exposure to light-dark (LD) cycles, whereas zebrafish period3 (per3) mRNA has been reported to be rhythmic from day 1 of development in constant conditions. We generated transgenic zebrafish in which expression of the firefly luciferase (luc) gene is driven by the zebrafish per3 promoter. Live larvae from these lines are rhythmically bioluminescent, providing the first vertebrate system for high-throughput measurement of circadian gene expression in vivo. Circadian rhythmicity in constant conditions was observed only after 5–6 d of development, and only if the fish were exposed to LD signals after day 4. Regardless of light exposure, a novel developmental profile was observed, with low expression during the first few days and a rapid increase when active swimming begins. Ambient temperature affected the developmental profile and overall levels of per3 and luc mRNA, as well as the critical days in which LD cycles were needed for robust bioluminescence rhythms. In summary, per3-luc zebrafish has revealed complex interactions among developmental events, light, and temperature in the expression of a clock gene.  相似文献   

5.
In humans, activity rhythms become fragmented and attenuated in the elderly. This suggests an alteration of the circadian system per se that could in turn affect the expression of biological rhythms. In primates, very few studies have analyzed the effect of aging on the circadian system. The mouse lemur provides a unique model of aging in non‐human primates. To assess the effect of aging on the circadian system of this primate, we recorded the circadian and daily rhythms of locomotor activity of mouse lemurs of various ages. We also examined age‐related changes in the daily rhythm of immunoreactivities for vasoactive intestinal polypeptide (VIP) and arginine‐vasopressin (AVP) in suprachiasmatic nucleus neurons (SCN), two major peptides of the biological clock. Compared to adult animals, aged mouse lemurs showed a significant increase in daytime activity and an advanced activity onset. Moreover, when maintained in constant dim red light, aged animals exhibited a shortening of the free‐running period compared to adult animals. In adults, AVP immunoreactivity (ir) peaked during the second part of the day, and VIP ir peaked during the night. In aged mouse lemurs, the peaks of AVP ir and VIP ir were significantly shifted with no change in amplitude. AVP ir was most intense at the beginning of the night; whereas, VIP ir peaked at the beginning of the daytime. A weakened oscillator could account for the rhythmic disorders often observed in the elderly. Changes in the daily rhythms of AVP ir and VIP ir may affect the ability of the SCN to transmit rhythmic information to other neural target sites, and thereby modify the expression of some biological rhythms.  相似文献   

6.
The neural retina is a key component of the vertebrate circadian system that is responsible for synchronizing the central circadian pacemaker to external light-dark (LD) cycles. The retina is itself rhythmic, showing circadian cycles in melatonin levels and gene expression. We assessed the in vivo incorporation of 32P-phosphate and 3H-glycerol into phospholipids of photoreceptor cells (PRCs) and retina ganglion cells (GCs) from chicks in constant illumination conditions (dark: DD or light: LL) over a 24-h period. Our findings showed that in DD there was a daily oscillation in 32P-labeling of total phospholipids synthesized in GCs and axonally transported to the brain. This metabolic fluctuation peaked during the subjective night (zeitgeber time [ZT] 20), persisted for several hours well into the subjective day and declined at subjective dusk (ZT 10-12). PRCs also exhibited an in vivo rhythm of 32P-phospholipid synthesis in DD. This rhythm peaked around ZT 22, continued a few hours into the day and declined by the end of subjective dusk. The major individual species labeled 1 h after 32P administration was phosphatidylinositol (PI) in both PRCs and GCs. Rhythmic phospholipid biosynthesis was also observed in DD after 3H-glycerol administration, with levels in GCs elevated from midday to early night. PRCs exhibited a similar rhythmic profile with the lowest levels of labeling during midnight. Phosphatidylcholine (PC) accounted for the individual species with the highest ratio of 3H-glycerol incorporation in both cell populations at all phases examined. By contrast, in LL the rhythm of 3H-glycerol labeling of phospholipids damped out in both cell layers. Our findings support the idea that, in constant darkness, the metabolism of retinal phospholipids, including their de novo biosynthesis, is regulated by an endogenous circadian clock.  相似文献   

7.
8.
In homeothermic vertebrates inhabiting temperate latitudes, it is clear that the seasonal changes in daylength are decoded by the master circadian clock, which through secondary messengers (like pineal melatonin secretion) entrains rhythmic physiology to local conditions. In contrast, the entrainment and neuroendocrine regulation of rhythmic physiology in temperate teleosts is not as clear, primarily due to the lack of understanding of the clock gene system in these species. In this study, we analyzed the diel expression of the clock‐genes in brains of Atlantic salmon, a species that is both highly photoperiodic and displays robust clock‐controlled behavior. Atlantic salmon parr were acclimated to either long‐day (LD) or short‐day (SD) photoperiods for one month and thereafter sampled at 4 h intervals over a 24 h cycle. Clock, Bmal1, Per2, and Cry2 were all actively expressed in salmon brain homogenates and, with the exception of Per2, all displayed rhythmic expression under SD photoperiods that parallels that reported in zebrafish. Interestingly, daylength significantly altered the mRNA expression of all clock genes studied, with Clock, Bmal1, and Per2 all becoming arrhythmic under the LD compared to SD photoperiod, while Cry2 expression was phase delayed under LD. It is thus proposed that the clock‐gene system is actively expressed in Atlantic salmon, and, furthermore, as has been reported in homeothermic vertebrates, it appears that clock expression is daylength‐dependent.  相似文献   

9.
The authors show that a circadian clock that regulates locomotor activity in larval zebrafish develops gradually over the first 4 days of life and that exposure to entraining signals late in embryonic development is necessary for initiation of robust behavioral rhythmicity. When zebrafish larvae were transferred from a light-dark (LD) cycle to constant darkness (DD) on the third or fourth day postfertilization, the locomotor activity of almost all fish was rhythmic on days 5 to 9 postfertilization, with peak activity occurring during the subjective day. Rhythm amplitude was higher after four LD cycles than after three LD cycles. When embryos were transferred from LD to DD on the second day postfertilization, only about half of the animals later displayed statistically significant activity rhythms. These rhythms were noisier and of lower amplitude, but phased normally. When zebrafish were raised in DD beginning at 14 h postfertilization, only 22% of them expressed significant circadian rhythmicity as larvae. These rhythms were of low amplitude and phase-locked to the time of handling on the third day rather than to the maternal LD cycle. These results show that behavioral rhythmicity in zebrafish is regulated by a pacemaking system that is sensitive to light by the second day of embryogenesis but continues to develop into the fourth day. This pacemaking system requires environmental signals to initiate or synchronize circadian rhythmicity.  相似文献   

10.
Extensive research has been carried out to understand how circadian clocks regulate various physiological processes in organisms. The discovery of clock genes and the molecular clockwork has helped researchers to understand the possible role of these genes in regulating various metabolic processes. In Drosophila melanogaster, many studies have shown that the basic architecture of circadian clocks is multi-oscillatory. In nature, different neuronal subgroups in the brain of D. melanogaster have been demonstrated to control different circadian behavioural rhythms or different aspects of the same circadian rhythm. Among the circadian phenomena that have been studied so far in Drosophila, the egg-laying rhythm is unique, and relatively less explored. Unlike most other circadian rhythms, the egg-laying rhythm is rhythmic under constant light conditions, and the endogenous or free-running period of the rhythm is greater than those of most other rhythms. Although the clock genes and neurons required for the persistence of adult emergence and activity/rest rhythms have been studied extensively, those underlying the circadian egg-laying rhythm still remain largely unknown. In this review, we discuss our current understanding of the circadian egg-laying rhythm in D. melanogaster, and the possible molecular and physiological mechanisms that control the rhythmic output of the egg-laying process.  相似文献   

11.
There is increasing evidence that the circadian clock is a significant driver of photosynthesis that becomes apparent when environmental cues are experimentally held constant. We studied whether the composition of photosynthetic pigments is under circadian regulation, and whether pigment oscillations lead to rhythmic changes in photochemical efficiency. To address these questions, we maintained canopies of bean and cotton, after an entrainment phase, under constant (light or darkness) conditions for 30–48 h. Photosynthesis and quantum yield peaked at subjective noon, and non‐photochemical quenching peaked at night. These oscillations were not associated with parallel changes in carbohydrate content or xanthophyll cycle activity. We observed robust oscillations of Chl a/b during constant light in both species, and also under constant darkness in bean, peaking when it would have been night during the entrainment (subjective nights). These oscillations could be attributed to the synthesis and/or degradation of trimeric light‐harvesting complex II (reflected by the rhythmic changes in Chl a/b), with the antenna size minimal at night and maximal around subjective noon. Considering together the oscillations of pigments and photochemistry, the observed pattern of changes is counterintuitive if we assume that the plant strategy is to avoid photodamage, but consistent with a strategy where non‐stressed plants maximize photosynthesis.  相似文献   

12.
The pineal gland plays a key role in the control of the daily and seasonal rhythms in most vertebrate species. In mammals, rhythmic melatonin (MT) release from the pineal gland is controlled by the suprachiasmatic nucleus via the sympathetic nervous system. In most non‐mammalian species, including birds, the pineal gland contains a self‐sustained circadian oscillator and several input channels to synchronize the clock, including direct light sensitivity. Avian pineal glands maintain rhythmic activity for days under in vitro conditions. Several physical (light, temperature, and magnetic field) and biochemical (Vasoactive intestinal polypeptide (VIP), norepinephrine, PACAP, etc.) input channels, influencing release of melatonin are also functional in vitro, rendering the explanted avian pineal an excellent model to study the circadian biological clock. Using a perifusion system, we here report that the phase of the circadian melatonin rhythm of the explanted chicken pineal gland can be entrained easily to photoperiods whose length approximates 24 h, even if the light period is extremely short, i.e., 3L:21D. When the length of the photoperiod significantly differs from 24 h, the endogenous MT rhythm becomes distorted and does not follow the light‐dark cycle. When explanted chicken pineal fragments were exposed to various drugs targeting specific components of intracellular signal transduction cascades, only those affecting the cAMP‐protein kinase‐A system modified the MT release temporarily without phase‐shifting the rhythm in MT release. The potential role of cGMP remains to be investigated.  相似文献   

13.
The insect moulting hormones, viz. the ecdysteroids, regulate gene expression during development by binding to an intracellular protein, the ecdysteroid receptor (EcR). In the insect Rhodnius prolixus, circulating levels of ecdysteroids exhibit a robust circadian rhythm. This paper demonstrates associated circadian rhythms in the abundance and distribution of EcR in several major target tissues of ecdysteroids, but not in others. Quantitative analysis of immunofluorescence images obtained by confocal laser-scanning microscopy following the use of anti-EcR has revealed a marked daily rhythm in the nuclear abundance of EcR in cells of the abdominal epidermis, brain, fat body, oenocytes and rectal epithelium of Rhodnius. This EcR rhythm is synchronous with the rhythm of circulating hormone levels. It free-runs in continuous darkness for several cycles, showing that EcR nuclear abundance is under circadian control. Circadian control of a nuclear receptor has not been shown previously in any animal. We infer that the above cell types detect and respond to the temporal signals in the rhythmic ecdysteroid titre. In several cell types, the rhythm in cytoplasmic EcR peaks several hours prior to the EcR peak in the nucleus each day, thereby implying a daily migration of EcR from the cytoplasm to the nucleus. This finding shows that EcR is not a constitutive nuclear receptor, as has previously been assumed. In the brain, rhythmic nuclear EcR has been found in peptidergic neurosecretory cells, indicating a potential pathway for feedback regulation of the neuroendocrine system by ecdysteroids, and also in regions containing circadian clock neurons, suggesting that the circadian timing system in the brain is also sensitive to rhythmic ecdysteroid signals. This work was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.  相似文献   

14.
In humans, activity rhythms become fragmented and attenuated in the elderly. This suggests an alteration of the circadian system per se that could in turn affect the expression of biological rhythms. In primates, very few studies have analyzed the effect of aging on the circadian system. The mouse lemur provides a unique model of aging in non-human primates. To assess the effect of aging on the circadian system of this primate, we recorded the circadian and daily rhythms of locomotor activity of mouse lemurs of various ages. We also examined age-related changes in the daily rhythm of immunoreactivities for vasoactive intestinal polypeptide (VIP) and arginine-vasopressin (AVP) in suprachiasmatic nucleus neurons (SCN), two major peptides of the biological clock. Compared to adult animals, aged mouse lemurs showed a significant increase in daytime activity and an advanced activity onset. Moreover, when maintained in constant dim red light, aged animals exhibited a shortening of the free-running period compared to adult animals. In adults, AVP immunoreactivity (ir) peaked during the second part of the day, and VIP ir peaked during the night. In aged mouse lemurs, the peaks of AVP ir and VIP ir were significantly shifted with no change in amplitude. AVP ir was most intense at the beginning of the night; whereas, VIP ir peaked at the beginning of the daytime. A weakened oscillator could account for the rhythmic disorders often observed in the elderly. Changes in the daily rhythms of AVP ir and VIP ir may affect the ability of the SCN to transmit rhythmic information to other neural target sites, and thereby modify the expression of some biological rhythms.  相似文献   

15.
BACKGROUND: Circadian clocks regulate the gene expression, metabolism and behaviour of most eukaryotes, controlling an orderly succession of physiological processes that are synchronised with the environmental day/night cycle. Central circadian pacemakers that control animal behaviour are located in the brains of insects and rodents, but the location of such a pacemaker has not been determined in plants. Peripheral plant and animal tissues also maintain circadian rhythms when isolated in culture, indicating that these tissues contain circadian clocks. The degree of autonomy that the multiple, peripheral circadian clocks have in the intact organism is unclear. RESULTS: We used the bioluminescent luciferase reporter gene to monitor rhythmic expression from three promoters in transgenic Arabidopsis and tobacco plants. The rhythmic expression of a single gene could be set at up to three phases in different anatomical locations of a single plant, by applying light/dark treatments to restricted tissue areas. The initial phases were stably maintained after the entraining treatments ended, indicating that the circadian oscillators in intact plants are autonomous. This result held for all the vegetative plant organs and for promoters expressed in all major cell types. The rhythms of one organ were unaffected by entrainment of the rest of the plant, indicating that phase-resetting signals are also autonomous. CONCLUSIONS: Higher plants contain a spatial array of autonomous circadian clocks that regulate gene expression without a localised pacemaker. Circadian timing in plants might be less accurate but more flexible than the vertebrate circadian system.  相似文献   

16.
Theperiod(per) gene and thetimeless(tim) gene are essential components of the circadian clock inDrosophila melanogaster. Both gene products interact in interdependent feedback loops, producing a self-sustained cellular rhythmin situ. Several oscillating cells are combined to discrete pacemaker centers that control rhythmic behavior. This paper reviews the work on localizing the circadian pacemaker neurons controlling activity and eclosion, leading to questions about how these pacemaker cells are synchronized to the external light–dark cycle, and how they impose periodicity on behavior. The circadian system ofDrosophilais also compared with that of other arthropods.  相似文献   

17.
Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Although there is a rich literature on these systems, parasitoid immune-disabling mechanisms have not been fully elucidated. Here we report on a newly discovered immune-disabling mechanism in the Pieris rapae/Pteromalus puparum host/parasitoid system. Because venom injections and parasitization suppresses host phagocytosis, we turned attention to the P. rapae scavenger receptor (Pr-SR), posing the hypothesis that P. puparum venom suppresses expression of the host Pr-SR gene. To test our hypothesis, we cloned a full-length cDNA of the Pr-SR. Multiple sequences alignment showed the deduced amino acid sequence of Pr-SR is similar to scavenger receptors of other lepidopterans. Bacterial and bead injections induced Pr-SR mRNA and protein expression, which peaked at 4 h post-bead injection. Venom injection inhibited Pr-SR expression. Pr-SR was specifically expressed in granulocytes compared to plasmatocytes. We localized the Pr-SR protein in cytoplasm and cellular membrane, with no evidence of secretion into host plasma. Double-strand RNA designed to Pr-SR mRNA silenced expression of Pr-SR and significantly impaired host phagocytosis and encapsulation reactions. Venom injections similarly silenced Pr-SR expression during the first 8 h post-treatment, after which the silencing effects gradually abated. We infer from these findings that one mechanism of impairing P. rapae hemocytic immune reactions is by silencing expression of Pr-SR.  相似文献   

18.
The pineal gland plays a cental role in the circadian organization of birds, although it is clearly only one component in a system with other components that have not yet been positively identified. The relative importance of the pineal and other components may vary from one group of birds to another. In the most thoroughly studied species, the house sparrow, pineal removal abolishes circadian rhythmicity; rhythmicity is restored by transplantation of a donor bird's pineal and the restored rhythm has the phase of the donor. This, and other evidence, argues convincingly that the pineal is a pacemaker in the sparrow circadian system. The pineal of the chicken has circadian rhythms in several biochemical parameters that result in the rhythmic synthesis of melatonin. The activity of one enzyme in this pathway is rhythmic for at least two cycles in organ culture. In view of this result it is interesting that pineal removal does not abolish circadian rhythmicity in chickens. The fact that lesions of the suprachiasmatic nuclei abolish circadian rhythms in sparrows, several mammalian species, and perhaps Japanese quail and reptiles, suggests that vertebrate circadian organization may be based on differentially weighted interactions between the pineal, the suprachiasmatic nuclei, and perhaps other brain regions.  相似文献   

19.
Clock mechanisms in zebrafish   总被引:1,自引:0,他引:1  
  相似文献   

20.
The neurobiological substratum of circadian rhythmicity encompasses three levels of integration: firstly, generation of time signals by circadian pacemakers; secondly, entrainment of pacemakers by environmental influences; thirdly, coupling of circadian pacemakers among themselves and with target systems responsible for the expression of overt rhythms. From recent contributions, the notion that circadian organization results from the interaction of independent oscillators and pathways has been strengthened. In addition, recent evidence supports the existence of circadian rhythmicity in single isolated neurons. New information was produced on the gene control of circadian rhythm generation in Drosophila, as well as interesting advances in the understanding of neuronal mechanisms involved in the generation, entrainment and coupling of circadian rhythms in various species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号