首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Abstract The role a small marsupial, the woylie Bettongia penicillata, might play in the recruitment and regeneration of Western Australian sandalwood Santalum spicatum through its seed caching behaviour was investigated in this study. To determine the fate of the seeds, cotton thread was attached to the seeds and the trail followed. A total of 25 seed caches were located. All of the seeds were found in separate caches, which was consistent with scatter‐hoarding behaviour. The average distance from the source of the seeds to the cache was 43.1 m ± 5.8 m at Dryandra woodland and 29.1 m ± 3.8 m at Karakamia sanctuary. The mean cache depth was 4.3 cm ± 0.2 cm at Dryandra woodland compared with 4.6 cm ± 0.3 cm at Karakamia sanctuary. Significantly more seedlings and saplings grew away from sandalwood trees at sites where woylies were present than at sites with no woylies. In contrast, significantly more seedlings and saplings grew under adult sandalwood trees at the site without woylies than where they were present, although there were significantly lower rates of recruitment and sandalwood regeneration at these sites. In addition, significantly more whole, undisturbed sandalwood seeds were found under the parent trees at the woylie‐free site than at the site with woylies. These findings strongly suggest that little seed dispersal or regeneration of sandalwood occurs in the absence of woylies. Through scatter‐hoarding, woylies have the potential to disperse and cache sandalwood seeds away from the source and significantly alter the subsequent regeneration of sandalwood. Furthermore, by caching seeds large distances away from a source, woylies could modify the distribution of sandalwood in an area.  相似文献   

2.
Wild populations of the critically endangered woylie (Bettongia penicillata) recently declined by 90% in southwest Western Australia. Increased predation is the leading hypothesis for decline, but disease may be playing a role increasing susceptibility to predation. To explore this possibility, we surveyed woylie populations in the wild, in captivity and in a predator-free sanctuary for exposure to, and infection with, four known pathogens of macropods: herpesviruses, Wallal and Warrego orbiviruses, and Toxoplasma gondii. Our study found two of 68 individuals positive for neutralizing antibodies against known macropodid alphaherpesviruses. Three of 45 individuals were PCR positive for a herpesvirus that was shown to be a novel gammaherpesvirus or a new strain/variant of Potoroid Herpesvirus 1. Further sequence information is required to definitively determine its correct classification. There was no evidence of antibodies to orbivirus Wallal and Warrego serogroups, and all serological samples tested for T. gondii were negative. This is the first report of PCR and serological detection of herpesviruses in the woylie. Positive individuals did not demonstrate clinical signs of herpesviral diseases; therefore, the clinical significance of herpesviruses to wild woylie populations remains unclear. Further monitoring for herpesvirus infections will be important to inform disease risk analysis for this virus and determine temporal trends in herpesvirus activity that may relate to population health and conservation outcomes.  相似文献   

3.
Bioturbation is an important ecosystem process, and the loss of native digging mammals due to introduced predators and habitat loss may have detrimental consequences for ecosystem health. The mycophagous woylie (Bettongia penicillata ogilbyi) was once widespread across the Australian continent and currently exists in a greatly reduced range, while the omnivorous quenda (Isoodon fusciventer), which once occurred across the southern part of Western Australia (WA), remains common in south west WA over a reduced range. Populations of these two digging marsupials are currently maintained within sanctuaries where they can reach high densities. To assess the influence these digging marsupials have on fungal assemblages, we investigated fungal root associations among seedlings of a key mycorrhizal forest canopy species, Corymbia calophylla, R. Br. K. D. Hill and L. A. S. Johnson. Seedlings were grown in soil collected from inside (heavily-dug soil) and outside (minimally-dug soil) two predator-proof sanctuaries. Our results showed that above-ground seedling biomass was significantly greater for seedlings grown in soil collected from inside the sanctuaries. There were no differences in the diversity or species richness of rhizosphere fungal communities isolated from these seedlings; however, the community composition was significantly different. This was most obvious for the predator-proof enclosure that had been in place for 20 years (Karakamia Sanctuary) compared with the more recently-installed Perup Sanctuary (fenced in 2010; 4 years before this study). At Karakamia, there were greater numbers of putatively hypogeous ectomycorrhizal fungi inside the enclosure and four times the number of operational taxonomic units of arbuscular mycorrhizal fungi outside the enclosure. The differences in fungal communities suggest that digging mammals play a pivotal role in ecosystem functioning by influencing the rhizosphere of this key forest canopy species, which has implications for maintaining the health and persistence of forests.  相似文献   

4.
The woylie or brush-tailed bettong (Bettongia penicillata) is a medium-sized native Australian marsupial that has undergone a dramatic decline in numbers in recent years. Trypanosome parasites have been identified in the woylie but little is known about the prevalence and clinical impact of other haemoprotozoan parasites in these marsupials. In the present study, the occurrence and molecular phylogeny of a piroplasm was studied in woylies from six different sites in Western Australia (WA). Blood samples were screened by PCR at the 18S rRNA locus and 80.4% (123/153) of the blood samples were positive for piroplasm DNA. Sequence and phylogenetic analysis of 12 of these positives identified them as Theileria penicillata, and sequencing of cloned PCR products indicated that no other species of Theileria were present. Infected woylies had a lower body weight but microscopic evaluation of the blood films indicated that T. penicillata did not appear to cause red cell injury or anaemia. Further studies are required to determine the clinical significance of T. penicillata in woylies.  相似文献   

5.
Disease is increasingly being recognised as a risk factor in declining wildlife populations around the globe. However, there are limited protocols to assess disease risks in declining wildlife. Using epidemiological principles, we define a step‐by‐step framework to complete this complex and critical task. As an example, we assessed the potential role of diseases in relation to the decline of the woylie or brush‐tailed bettong (Bettongia penicillata ogilbyi) in Western Australia. Between 1999 and 2006, woylie populations declined by 90%. The wildlife disease risk assessment began with a list of all known or suspected diseases to which the woylie, a species of macropod, is susceptible. This list was assessed against the spatial, temporal and demographic characteristics of the decline. Diseases causing widespread and high mortalities or debilitation leading to predation received high scores. Based on this assessment, priority diseases or pathogens for investigation identified were haemoparasites, gastrointestinal helminths, Neospora caninum, Toxoplasmosis (Toxoplasma gondii), Encephalomyocarditis virus, Macropod Orbiviruses (Wallal virus and Warrego virus), Macropod Herpesviruses (Macropodid herpesvirus 1 and 2) and Salmonella spp.  相似文献   

6.
Kinetoplast DNA (kDNA) is the mitochondrial genome of trypanosomatids. It consists of a few dozen maxicircles and several thousand minicircles, all catenated topologically to form a two-dimensional DNA network. Minicircles are heterogeneous in size and sequence among species. They present one or several conserved regions that contain three highly conserved sequence blocks. CSB-1 (10?bp sequence) and CSB-2 (8?bp sequence) present lower interspecies homology, while CSB-3 (12?bp sequence) or the Universal Minicircle Sequence is conserved within most trypanosomatids. The Universal Minicircle Sequence is located at the replication origin of the minicircles, and is the binding site for the UMS binding protein, a protein involved in trypanosomatid survival and virulence. Here, we describe the structure and organisation of the kDNA of Trypanosoma copemani, a parasite that has been shown to infect mammalian cells and has been associated with the drastic decline of the endangered Australian marsupial, the woylie (Bettongia penicillata). Deep genomic sequencing showed that T. copemani presents two classes of minicircles that share sequence identity and organisation in the conserved sequence blocks with those of Trypanosoma cruzi and Trypanosoma lewisi. A 19,257?bp partial region of the maxicircle of T. copemani that contained the entire coding region was obtained. Comparative analysis of the T. copemani entire maxicircle coding region with the coding regions of T. cruzi and T. lewisi showed they share 71.05% and 71.28% identity, respectively. The shared features in the maxicircle/minicircle organisation and sequence between T. copemani and T. cruzi/T. lewisi suggest similarities in their process of kDNA replication, and are of significance in understanding the evolution of Australian trypanosomes.  相似文献   

7.
In the intestinal tract of fifth instars of the hematophagous reduviid bugs Rhodnius prolixus and Triatoma infestans blood ingestion induced an initial decrease of the concentration of the respective symbiotic bacteria Rhodococcus rhodnii and Nocardia sp. and then within 10 days a 15- or 18-fold increase of the total population/bug to about 0.8 x 10(9) colony-forming units in R. prolixus and 1.8 x 10(9) colony-forming units in T. infestans. About 95-99% of the total populations of both symbionts developed in the anterior midgut regions, i.e., cardia and stomach. The passage from the blood-storing stomach to the digesting small intestine caused a considerable breakdown of symbiont populations, and only about 0.01% of the total population was present in the rectum. These were excreted mainly within 4 h after a blood meal. After infection with three species of trypanosomatids, R. rhodnii, the symbiont of R. prolixus, was affected by Trypanosoma rangeli, but not by Blastocrithidia triatomae or Trypanosoma cruzi. On the other hand, in T. infestans the concentration of Nocardia sp. was reduced after infection with B. triatomae, but not by T. rangeli nor T. cruzi. In long-term B. triatomae-infected T. infestans, this reduction and a reduced diuretic activity after feeding synergistically lowered the symbiont concentration in the singly deposited feces/urine drops drastically compared to uninfected controls. These data strongly support the theory of the mechanisms of pathogenicity of T. rangeli and B. triatomae for R. prolixus and T. infestans, respectively, that the primal point of attack is the host-specific symbiont, R. rhodnii and Nocardia sp., respectively.  相似文献   

8.
The extent of genetic diversity loss and former connectivity between fragmented populations are often unknown factors when studying endangered species. While genetic techniques are commonly applied in extant populations to assess temporal and spatial demographic changes, it is no substitute for directly measuring past diversity using ancient DNA (aDNA). We analysed both mitochondrial DNA (mtDNA) and nuclear microsatellite loci from 64 historical fossil and skin samples of the critically endangered Western Australian woylie (Bettongia penicillata ogilbyi), and compared them with 231 (= 152 for mtDNA) modern samples. In modern woylie populations 15 mitochondrial control region (CR) haplotypes were identified. Interestingly, mtDNA CR data from only 29 historical samples demonstrated 15 previously unknown haplotypes and detected an extinct divergent clade. Through modelling, we estimated the loss of CR mtDNA diversity to be between 46% and 91% and estimated this to have occurred in the past 2000–4000 years in association with a dramatic population decline. In addition, we obtained near‐complete 11‐loci microsatellite profiles from 21 historical samples. In agreement with the mtDNA data, a number of ‘new’ microsatellite alleles was only detected in the historical populations despite extensive modern sampling, indicating a nuclear genetic diversity loss >20%. Calculations of genetic diversity (heterozygosity and allelic rarefaction) showed that these were significantly higher in the past and that there was a high degree of gene flow across the woylie's historical range. These findings have an immediate impact on how the extant populations are managed and we recommend the implementation of an assisted migration programme to prevent further loss of genetic diversity. Our study demonstrates the value of integrating aDNA data into current‐day conservation strategies.  相似文献   

9.
10.
Trypanosomatid parasites are notorious for the human diseases they cause throughout Africa and South America. However, non-pathogenic trypanosomatids are also found worldwide, infecting a wide range of hosts. One example is Trypanosoma (Megatrypanum) theileri, a ubiquitous protozoan commensal of bovids, which is distributed globally. Exploiting knowledge of pathogenic trypanosomatids, we have developed Trypanosoma theileri as a novel vehicle to deliver vaccine antigens and other proteins to cattle. Conditions for the growth and transfection of T. theileri have been optimised and expressed heterologous proteins targeted for secretion or specific localisation at the cell interior or surface using trafficking signals from Trypanosoma brucei. In cattle, the engineered vehicle could establish in the context of a pre-existing natural T. theileri population, was maintained long-term and generated specific immune responses to an expressed Babesia antigen at protective levels. Building on several decades of basic research into trypanosomatid pathogens, Trypanosoma theileri offers significant potential to target multiple infections, including major cattle-borne zoonoses such as Escherichia coli, Salmonella spp., Brucella abortus and Mycobacterium spp. It also has the potential to deliver therapeutics to cattle, including the lytic factor that protects humans from cattle trypanosomiasis. This could alleviate poverty by protecting indigenous African cattle from African trypanosomiasis.  相似文献   

11.
The mountain hare (Lepus timidus) population in southern Norway appears to be in decline. Necropsy and laboratory examinations of 36 hares found dead or diseased during 2007-2009 in Vest- and Aust-Agder counties showed that disease and deaths were attributed to multiple causes, with no specific etiology emerging as a cause for population decline. To investigate whether Borrelia burgdorferi sensu lato (s.l.) infection is associated with mortality in mountain hares, tissues and ticks collected from hares were investigated for infection with the spirochete. Borrelia burgdorferi s.l. DNA was not detected in samples from internal organs, whereas Borrelia afzelii, B. burgdorferi sensu stricto (s.s.), and the not-yet-defined Borrelia sp. SV1 were found in skin samples from hares and in adult and nymphal Ixodes ricinus feeding on hares. Only B. burgdorferi s.s. and Borrelia sp. SV1 were detected in larvae feeding on hares. Our results indicate that disseminated Borrelia infection in hares rarely occurs and, presumably, does not play a central role in the suspected population decline. The results also suggest that the mountain hare to some degree functions as a transmission host for B. burgdorferi s.s. and Borrelia sp. SV1.  相似文献   

12.
Yearly population fluctuations of M. pustulae were investigated at 19 sites in Kyushu. In sites where a platygastrid is the only parasitoid of the midge, the percentage parasitism was very low in the incipient stage of the outbreak of the midge populations. After the number of midges reached a peak, the midge populations declined as the percentage parasitism increased, and then the outbreak ceased. On the other hand, in several populations no outbreak was found and the percentage parasitism was constantly at a high level. Therefore, the immediate cause for the outbreak seemed to be a decline of the percentage parasitism. Like the midge, the platygastrid has one generation each year, and its females also emerge in spring to deposit their eggs within host eggs. The decline of the percentage parasitism seemed to be mainly affected by the time lag between emergence periods of M. pustulae and the platygastrid. In the midge populations parasitized by both the platygastrid and a eulophid (Chrysonotomyia sp.), an extinction of the population was observed, resulting from parasitism by the latter, Chrysonotomyia sp. is polyphagous and multivoltine, and is a late parasitoid, as discussed byAskew (1975). When the density of the midges is very low, the platygastrid may leave the host eggs unparasitized, while Chrysonotomyia sp. may not, because the mature galls are conspicuous.  相似文献   

13.
Tsetse-transmitted trypanosomiasis poses a serious threat to human and animal health in sub-Saharan Africa. The majority of tsetse flies ( Glossina spp.) in a natural population will not develop a mature infection of either Trypanosoma congolense or Trypanosoma brucei sp. because of refractoriness, a phenomenon that is affected by different factors, including the tsetse fly's immune defence. Starvation of tsetse flies significantly increases their susceptibility to the establishment of a trypanosome infection. This paper reports the effects of nutritional stress (starvation) on (a) uninduced baseline levels of gene expression of the antimicrobial peptides attacin, defensin and cecropin in the tsetse fly, and (b) levels of expression induced in response to bacterial ( Escherichia coli ) or trypanosomal challenge. In newly emerged, unfed tsetse flies, starvation significantly lowers baseline levels of antimicrobial peptide gene expression, especially for attacin and cecropin. In response to trypanosome challenge, only non-starved older flies showed a significant increase in antimicrobial peptide gene expression within 5 days of ingestion of a trypanosome-containing bloodmeal, especially with T. brucei bloodstream forms. These data suggest that a decreased expression of immune genes in newly hatched flies or a lack of immune responsiveness to trypanosomes in older flies, both occurring as a result of fly starvation, may be among the factors contributing to the increased susceptibility of nutritionally stressed tsetse flies to trypanosome infection.  相似文献   

14.
A population of American kestrels breeding in southeastern Pennsylvania was examined for hematozoa. Haemoproteus tinnunculi infected 17 of 23 (74%) of the adults. Parasitemia ranged from two to 252, with a median of 32 infected erythrocytes per 10,000. Parasitemia and body weight of female kestrels were negatively correlated. This parasite was not observed in the six juvenile or 38 nestling kestrels examined. Trypanosoma sp. was detected by culture in three of seven (43%) adults, but not in the six juveniles and eight nestlings examined.  相似文献   

15.
Cypripedium calceolus has suffered an alarming decline, and today mainly occurs in small and isolated populations. In Denmark there are only two populations, close to each other and situated far from other European stands. One population is stagnant or in slow decline, whereas the other is in rapid increase. We examined the levels of genetic diversity and compatibility and seed quality following experimental crosses. No genetic variation could be detected in plastid and nuclear markers within or between the two populations—in contrast to results previously reported from other European populations of C. calceolus. This may indicate a founder effect in both populations, but it could also be the outcome of prolonged inbreeding or reflect a genetic bottleneck after the populations were established. According to fruit dimensions and frequency of fully developed seeds there was full self-compatibility in the stagnant population, and partial late-acting self-incompatibility in the proliferating population. In combination with previous reports from other countries, this suggests that several self-incompatibility systems may occur in C. calceolus. Seeds from the older and stagnant population performed more poorly in germination tests in vitro than seeds from the thriving population. The difference needs not be genetically based, but could be due to environmental differences during seed maturation, producing different seed quality or dormancy characteristics. However, low level of genetic diversity within the populations may affect their ability to adapt and the possibility of inbreeding depression should be investigated.  相似文献   

16.
Leishmania herreri sp. n. is described after isolation in pure culture from blood, viscera and skin of two-toed (Choloepus hoffmanni) and three-toed (Bradypus griseus) sloths from Costa Rica. Also, it was isolated from the following sandflies: Lutzomyia trapidoi, L. ylephiletor and L. shannoni. The amastigote forms were not seen in the final hosts but they were obtained in tissue culture at 33 C. Both promastigotes and amastigotes failed to infect hamsters. The new parasite is isolated frequently in culture, mixed with other hemoflagellates such as L. braziliensis, Endotrypanum sp. and Trypanosoma rangeli.  相似文献   

17.
The dynamics of Angoumois grain moth, Sitotroga cerealella (Olivier ), and maize weevil, Sitophilus zeamaisMotschulsky , populations breeding in a small bulk (initially 5.36 t) of shelled corn were studied over an 8-year period by monthly sampling. The weevil population showed wide fluctuations in density superimposed on a general decline with time. The moth population showed no upward or downward trend for the first 60 months, although it fluctuated widely. Following a decline that occurred between 56 and 60 months, the moth population fluctuated within a much narrower range, and there was a general decrease in density with time. The decline of the weevil population paralleled deterioration of the corn as did that of the moth population after ca 60 months, and the decline of both species probably resulted from increasing scarcity of suitable breeding sites. Both populations exhibited seasonal variation in density with minima in late summer and early fall, following periods of adversely high temperatures in the storage shed. The populations increased during the fall, leveled off or declined slightly during the winter months, and then increased to maximum levels in late spring or early summer. It thus appears that high temperatures had a greater adverse effect on the populations than low temperatures. The grain moth and the maize weevil both tended to be randomly dispersed at low population levels and moderately aggregated at intermediate and high levels, although the degree of aggregation was not correlated with population density when low population levels were considered separately, and the maize weevil showed a greater tendency for aggregation than did the grain moth. Analysis of individual samples at fixed points in time showed a conspicuous bias for negative correlation between numbers of the two species within sampling quadrats, suggesting a tendency for the two species to segregate within the grain mass. This process could have resulted from behavioral differences or from the destruction of one species by the other. Competitive displacement of the grain moth by the maize weevil has been demonstrated in laboratory experiments but has rarely been observed under natural conditions, and in our study the two species coexisted for 8 years in a relatively small grain bulk.  相似文献   

18.
In present study seven RAPD primers were used to access the diversity within and among twelve populations of three mushroom species Ganoderma lucidum, leucoagaricus sp. and Lentinus sp. Total of 111 bands were scored by 7 RAPD primers in 30 accessions of three mushroom species collected from different sampling sites of central India. Total 111 bands were generated using seven primers which were F-1, OPG-06, OPC-07, OPD-08, OPA-02, OPD-02, OPB-10. All 111 bands were polymorphic in nature (100%). Therefore, it revealed that the used primers had sufficient potency for population studies and 30 accessions had higher genetic differences among each other. In best of the knowledge, this is the first report, which accesses the genetic diversity between three mushroom species (Gd Ganoderma lucidum, Lg Leucoagaricus sp., Ls Lentinus). The polymorphic percentage ranged from 3.60 to 23% within twelve populations, while polymorphic percentage among group was 40.56, among population within groups was 41.12 and within population was 18.32. This indicated that the genetic diversity within the population was very low, but slightly higher in the populations of three species. Among three groups representing Gd., Lg and Ls, Among populations within groups shown highest percentage of variation (Pv?=?41.12) while within populations, the lowest percentage of variation (18.32) was observed. This result also support that the highest genetic variation was present among groups in comparison to among the population within a species and lowest genetic variation was observed within the population.  相似文献   

19.
The one-humped camel (Camelus dromedarius) or dromedary is an economically important domestic animal. However, infectious diseases, including those caused by vector-borne hemopathogens, frequently compromise the health and production of camels. In this study, we examined infections caused by Babesia, Theileria, Trypanosoma, and Anaplasma species in camels in Egypt. We analyzed blood DNA samples from 148 camels reared in six Egyptian governorates (Giza, Asyut, Sohag, Qena, Luxor, and the Red Sea) using pathogen-specific Polymerase Chain Reaction (PCR) assays. Our results indicated that 29 (19.6%), 22 (14.9%), 1 (0.7%), 2 (1.4%), 1 (0.7%), 2 (1.4%), and 28 (18.9%) of the surveyed animals were infected with Babesia bovis, B. bigemina, Babesia sp. Mymensingh, Theileria sp. Yokoyama, Theileria equi, Trypanosoma evansi, and Anaplasma marginale, respectively. We found that a total of 68 (45.9%) animals were infected with at least one of the detected hemopathogens. Sequencing analyses of PCR amplicons confirmed our diagnostic results. This study is the first to report Theileria sp. Yokoyama and Babesia sp. Mymensingh in Egypt. This is also the first report of infection with these two species in one-humped camel. In conclusion, this study found that camels in Egypt are infected with several vector-borne hemopathogens, including novel parasite species.  相似文献   

20.
In our attempt to identify telomere region-binding proteins in Trypanosoma brucei, we identified ST-1, a polypeptide with novel features. ST-1 was chromatographically purified from S-100 cell extracts and was renatured from a sodium dodecyl sulfate-protein gel as a 39-kDa polypeptide. It forms a specific complex with the trypanosome telomere repeats of TTAGGG, but more significantly, it shows a higher affinity for the 29-bp subtelomere repeats of T. brucei. These 29-mer boxes are a large tandem series of telomere-derived repeats which separate the simple telomere DNA from middle-repetitive telomere-associated sequences on many chromosomes. ST-1 is the first example of a protein binding within such large repetitive subtelomere elements in trypanosomes or other organisms. ST-1 is also novel in that it has a selective affinity for the C-rich strands of both the subtelomeric 29-mer and the telomere repeats, comparable to that for the duplex form of the respective repeats. All previously described telomere-binding proteins have affinity for only the duplex form or for the G-rich strand. This C-rich strand binding specificity of ST-1 may provide insight into this protein's mechanism of binding in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号