首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Two Macaca fascicularis with preexisting immunity to vaccinia virus were immunized twice with recombinant vaccinia virus expressing SIVmne gp160. Their SIV-specific antibody responses were lower than that of vaccinia-naive animals immunized similarly. Upon repeated boosting with gp160, the SIV-specific antibody titers in vaccinia-primed animals reached similar levels as vaccinia-naive animals and with comparable neutralizing titers. Both animals were protected against repeated intravenous challenge with low-dose SIVmne E11S. These results are significant because SIVmne E11S infection in M. fascicularis is pathogenic and leads to AIDS-like diseases.  相似文献   

4.
Recent events have raised concern over the use of pathogens, including variola virus, as biological weapons. Vaccination with Dryvax is associated with serious side effects and is contraindicated for many people, and the development of a safer effective smallpox vaccine is necessary. We evaluated an attenuated vaccinia virus, modified vaccinia virus Ankara (MVA), by use of a murine model to determine its efficacy against an intradermal (i.d.) or intranasal (i.n.) challenge with vaccinia virus (vSC8) or a recombinant vaccinia virus expressing murine interleukin-4 that exhibits enhanced virulence (vSC8-mIL4). After an i.d. challenge, 15 of 16 mice who were inoculated with phosphate-buffered saline developed lesions, one dose of intramuscularly administered MVA was partially protective (3 of 16 mice developed lesions), and the administration of two or three doses of MVA was completely protective (0 of 16 mice developed lesions). In unimmunized mice, an i.n. challenge with vSC8 caused a significant but self-limited illness, while vSC8-mIL4 resulted in lethal infections. Immunization with one or two doses of MVA prevented illness and reduced virus titers in mice who were challenged with either vSC8 or vSC8-mIL4. MVA induced a dose-related neutralizing antibody and vaccinia virus-specific CD8+-T-cell response. Mice immunized with MVA were fully protected from a low-dose vSC8-mIL4 challenge despite a depletion of CD4+ cells, CD8+ cells, or both T-cell subsets or an antibody deficiency. CD4+- or CD8+-T-cell depletion reduced the protection against a high-dose vSC8-mIL4 challenge, and the depletion of both T-cell subsets was associated with severe illness and higher vaccinia virus titers. Thus, MVA induces broad humoral and cellular immune responses that can independently protect against a molecularly modified lethal poxvirus challenge in mice. These data support the continued development of MVA as an alternative candidate vaccine for smallpox.  相似文献   

5.
6.
Mice immunized with two intragastrically administered doses of a replication-deficient recombinant vaccinia virus containing the hemagglutinin and nucleoprotein genes from H1N1 influenza virus developed serum anti-H1 immunoglobulin G (IgG) antibody that completely protected the lungs from challenge with H1N1. Almost all of the mice given two intragastric doses also developed mucosal anti-H1 IgA antibody, and those with high anti-H1 IgA titers had completely protected noses. Intramuscular injection of the vaccine protected the lungs but not the noses from challenge. We also found that the vaccine enhanced recovery from infection caused by a shifted (H3N2) influenza virus, probably through the induction of nucleoprotein-specific cytotoxic T-lymphocyte activity. A replication-deficient, orally administered, enteric-coated, vaccinia virus-vectored vaccine might safely protect humans against influenza.  相似文献   

7.
Recombinant vaccinia virus expressing the envelope proteins of type D retrovirus-Washington (SRV-2/W) was used to immunize macaques against SRV-2 infection. Four immunized macaques which had resisted a prior low-dose challenge were rechallenged with a high dose (10” infectious particles) of SRV-2 two years after being immunized. All four non-immunized control macaques became infected, but the four vaccinated animals resisted this intravenous challenge, as determined by the inability to detect SRV-2 in peripheral blood mononuclear cells and by the lack of seroconversion to new viral antigens.  相似文献   

8.
In the present work, we evaluated if oral immunization with the pneumococcal protective protein A (PppA), expressed in the cell wall of Lactococcus lactis (L. lactis PppA+), was able to confer protective immunity against Streptococcus pneumoniae. Mice were immunized orally with L. lactis PppA+ for 5 consecutive days. Vaccination was performed one (nonboosted group) or 2 times with a 2 week interval between each immunization (boosted group). Oral priming with L. lactis PppA+ induced the production of anti-PppA IgM, IgG, and IgA antibodies in serum and in bronchoalveolar (BAL) and intestinal (IF) lavage fluids. Boosting with L. lactis PppA+ increased the levels of mucosal and systemic immunoglobulins. Moreover, the avidity and the opsonophagocytic activity of anti-PppA antibodies were significantly improved in the boosted group. The presence of both IgG1 and IgG2a anti-PppA antibodies in serum and BAL and the production of both interferon gamma and interleukin-4 by spleen cells from immunized mice indicated that L. lactis PppA+ stimulated a mixture of Th1 and Th2 responses. The ability of L. lactis PppA+ to confer cross-protective immunity was evaluated using challenge assays with serotypes 3, 6B, 14, and 23F. Lung bacterial cell counts and hemocultures showed that immunization with L. lactis PppA+ improved resistance against all the serotypes assessed, including serotype 3, which was highly virulent in our experimental animal model. To our knowledge, this is the first demonstration of protection against respiratory pneumococcal infection induced by oral administration of a recombinant lactococcal vaccine.  相似文献   

9.
We studied immune responses to hepatitis C virus (HCV) genes delivered as DNA encoding the entire HCV protein coding genome in two polycistronic plasmids encoding HCV capsid-E1-E2-NS2-NS3 and HCV NS3-NS4-NS5 in HLA-A2.1-transgenic mice. Immune responses to HCV DNA prime and recombinant canarypox virus boost were also studied with the above constructs. At 8 weeks after a canarypox virus boost, the DNA prime/canarypox virus boosting regimen induced potent cellular immune responses to HCV structural and nonstructural proteins on target cells expressing the HLA-A2.1 allele. High frequencies of gamma interferon-secreting cells, as detected by enzyme-linked immunospot assay, were obtained in response to several endogenously expressed HCV proteins. We also observed cytotoxic-T-lymphocyte reactivity in response to endogenously expressed HCV proteins in fresh spleen cells without in vitro expansion. Upon challenge with a recombinant vaccinia virus expressing HCV proteins at 2 months postimmunization, the HCV DNA prime/canarypox virus-immunized mice showed a complete reduction in vaccinia virus titers compared to HCV DNA prime/boost- and mock-immunized controls. Immune responses were still detectable 4 months after canarypox virus boost in immunized mice. Interestingly, at 10 months postimmunization (8 months after canarypox virus boost), the protection in HCV DNA prime/boost-immunized mice against recombinant HCV-vaccinia virus challenge was higher than that observed in HCV DNA prime/canarypox virus boost-immunized mice.  相似文献   

10.
We constructed recombinant vaccinia virus vectors for expression of the structural region of hepatitis C virus (HCV). Infection of mammalian cells with a vector (vv/HCV1-906) encoding C-E1-E2-NS2 generated major protein species of 22 kDa (C), 33 to 35 kDa (E1), and 70 to 72 kDa (E2), as observed previously with other mammalian expression systems. The bulk of the E1 and E2 expressed by vv/HCV1-906 was found integrated into endoplasmic reticulum membranes as core-glycosylated species, suggesting that these E1 and E2 species represent intracellular forms of the HCV envelope proteins. HCV E1 and E2 formed E1-E2 complexes which were precipitated by either anti-E1 or anti-E2 serum and which sedimented at approximately 15 S on glycerol density gradients. No evidence of intermolecular disulfide bonding between E1 and E2 was detected. E1 and E2 were copurified to approximately 90% purity by mild detergent extraction followed by chromatography on Galanthus nivalus lectin-agarose and DEAE-Fractogel. Immunization of chimpanzees with purified E1-E2 generated high titers of anti-E1 and anti-E2 antibodies. Further studies, to be reported separately, demonstrated that purified E1-E2 complexes were recognized at high frequency by HCV+ human sera (D. Y. Chien, Q.-L. Choo, R. Ralston, R. Spaete, M. Tong, M. Houghton, and G. Kuo, Lancet, in press) and generated protective immunity in chimpanzees (Q.-L. Choo, G. Kuo, R. Ralston, A. Weiner, D. Chien, G. Van Nest, J. Han, K. Berger, K. Thudium, J. Kansopon, J. McFarland, A. Tabrizi, K. Ching, B. Mass, L. B. Cummins, E. Muchmore, and M. Houghton, submitted for publication), suggesting that these purified HCV envelope proteins display native HCV epitopes.  相似文献   

11.
There is increasing evidence that a small percentage of individuals exposed to the hepatitis C virus have the capacity to generate a strong cellular immune response against the virus and avoid persistent infection, and perhaps do so repeatedly after re-exposure. This article reviews the evidence that the responses identified in this unique group of individuals represent the protective immunity that will need to be elicited by hepatitis C virus vaccines.  相似文献   

12.
Two chimpanzees immunized with woodchuck hepatitis virus (WHV) surface antigen (WHsAg) developed antibodies cross-reactive with hepatitis B virus (HBV) surface antigen (HBsAg). After challenge with HBV, one animal was completely protected and the other experienced a subclinical infection, without evidence of liver disease. Three woodchucks immunized with HBsAg developed antibodies to HBsAg which did not cross-react with WHsAg. After challenge with WHV, all three woodchucks developed typical acute infections with associated hepatic lesions. Serological studies with the cross-reactive antibodies raised in chimpanzees suggested that the protective epitopes of WHsAg were related to the group a specificity of HBsAg. These studies indicated that cross-protective epitopes are shared by HBV and WHV; however, the humoral response to these epitopes can vary among species.  相似文献   

13.
Interferon therapy in chronic hepatitis C virus infection   总被引:2,自引:0,他引:2  
Abstract: Antiviral treatment of chronic hepatitis C with interferon is reviewed. Alpha-interferon, both recombinant alpha-2a, -2b and human lymphoblastoid interferon given at a dose of ≥3MU t.i.w. for 6–12 months will result in normalisation of ALT levels complete response) in some 50–60% of treated patients with chronic hepatitis C virus (HCV) infection. Approximately half of the complete responders to interferon will relapse within 6 months once treatment is withdrawn (non-sustained response). Longer treatment schedules (6 vs. 12 months) seem to diminish the relapse rate and increase the percentage of sustained response. In patients with sustained response to interferon treatment with continuously normal ALT levels ≥6 months after treatment stop a concomitant eradication of the viraemia is usually seen, whereas a non-sustained or non-response to interferon usually will indicate a continuous viraemia. Factors predictive of a favourable response are low pretreatment HCV RNA levels in serum, genotypes other than type II according to Okamoto, short disease duration, female gender and less pronounced liver damage, whereas high serum HCV RNA levels, having genotype II and cirrhosis, are predictive of a less favourable response. Patients with a sustained response and eradication of the viraemia will also improve their liver inflammation with diminishing scores for portal inflammation, piecemeal necrosis, lobular inflammation and also fibrosis after treatment. For non-responders and non-sustained responders to interferon, ribavirin especially in combination with interferon will offer some hope for the future.  相似文献   

14.
15.
Immune-based novel therapies for chronic hepatitis C virus infection   总被引:3,自引:0,他引:3  
Kakimi K 《Human cell》2003,16(4):191-197
Hepatitis C virus (HCV) infection is a great public health problem, with an estimated 200 million chronically infected patients worldwide. No vaccines are currently available for HCV, and only a subset of HCV patients responds to interferon-alpha (IFN-alpha) and Ribavirin treatment. Substantial evidence has emerged recently to support the role of the host immune response in the outcome and pathogenesis of HCV infection. Our aims of this article are to present the immune-based novel therapeutic options for HCV infection and the evidence supporting their use in patients with chronic hepatitis C. There is a growing consensus that acute control of HCV infection is associated with a vigorous intrahepatic antiviral CD4+ and CD8+ T cell response. IFN-gamma was detectable in the livers of the chimpanzees that cleared or controlled the virus, raising the possibility that IFN-gamma might perform antiviral effector functions during HCV infection. Based on these observations, therapeutic induction of intrahepatic IFN-gamma by adoptive immunotherapy might be able to control chronic HCV infection. Immune-based novel therapies appear to hold great promise in treating chronic HCV infection.  相似文献   

16.
17.
The extraordinary genetic diversity of human immunodeficiency virus type 1 (HIV-1) is a major problem to overcome in the development of an effective vaccine. In the most reliable animal model of HIV-1 infection, chimpanzees were immunized with various combinations of HIV-1 antigens, which were derived primarily from the surface glycoprotein, gp160, of HIV-1 strains LAI and MN. The immunogens also included a live recombinant canarypox virus expressing a gp160-MN protein. In one experiment, two chimpanzees were immunized multiple times; one animal received antigens derived only from HIV-1LAI, and the second animal received antigens from both HIV-1LAI and HIV-1MN. In another experiment, four chimpanzees were immunized in parallel a total of five times over 18 months; two animals received purified gp160 and V3-MN peptides, whereas the other two animals received the recombinant canarypox virus and gp160. At 3 months after the final booster, all immunized and naive control chimpanzees were challenged by intravenous inoculation of HIV-1SF2; therefore, the study represented an intrasubtype B heterologous virus challenge. Virologic and serologic follow-up showed that the controls and the two chimpanzees immunized with the live recombinant canarypox virus became infected, whereas the other animals that were immunized with gp160 and V3-MN peptides were protected from infection. Evaluation of both cellular and humoral HIV-specific immune responses at the time of infectious HIV-1 challenge identified the following as possible correlates of protection: antibody titers to the V3 loop of MN and neutralizing antibody titers to HIV-1MN or HIV-1LAI, but not to HIV-1SF2. The results of this study indicate that vaccine-mediated protection against intravenous infection with heterologous HIV-1 strains of the same subtype is possible with some immunogens.  相似文献   

18.
DNA vaccination has been evaluated with the lymphocytic choriomeningitis virus (LCMV) model system. Plasmid DNA encoding the LCMV nucleoprotein, when injected intramuscularly, induces both antiviral antibodies and cytotoxic T lymphocytes. Injection of DNA encoding the nucleoprotein or the viral glycoprotein confers protection against normally lethal LCMV challenge in a major histocompatibility complex-dependent manner. The protection conferred is incomplete, but it is most probably mediated by the induced cytotoxic T lymphocytes.  相似文献   

19.
Although the hepatitis C virus (HCV) is an enveloped virus, naked nucleocapsids have been reported in the serum of infected patients, and most recently novel HCV subgenomes with deletions of the envelope proteins have been identified. However the significance of these findings remains unclear. In this study, we used the baculovirus expression system to generate recombinant HCV capsid-like particles, and investigated their possible interactions with cells. We show that expression of HCV core in insect cells can sufficiently direct the formation of capsid-like particles in the absence of the HCV envelope glycoproteins and of the 5' untranslated region. By confocal microscopy analysis, we provide evidence that the naked capsid-like particles could be uptaken by human hepatoma cells. Moreover, our findings suggest that they have the potential to produce cell-signaling effects.  相似文献   

20.
The nonstructural immediate-early protein pp89 of murine cytomegalovirus (MCMV) is the first viral protein synthesized after infection and has a regulatory function in viral gene expression. Despite its localization in the nucleus of infected cells, pp89 is also the dominant antigen recognized by MCMV-specific cytolytic T lymphocytes. The recombinant vaccinia virus MCMV-ieI-VAC, which expresses pp89, was used to study the capacity of this protein to induce protective immunity in BALB/c mice. Vaccination with MCMV-ieI-VAC induced a long-lasting immunity that protected mice against challenge with a lethal dose of MCMV but did not prevent infection and morbidity. In vivo depletion of CD8+ T lymphocytes before challenge completely abrogated the protective immunity. CD8+ T lymphocytes derived from MCMV-ieI-VAC-primed donors and adoptively transferred into sublethally irradiated and MCMV-infected recipients were found to limit viral replication in host tissues, whereas CD4+ T lymphocytes and pp89-specific antiserum had no protective effect. The data demonstrate for the first time that a single nonstructural viral protein can confer protection against a lethal cytolytic infection and that this immunity is entirely mediated by the CD8+ subpopulation of T lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号