首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested whether directional selection on an index-based wing character in Drosophila melanogaster affected developmental stability and patterns of directional asymmetry. We selected for both an increase (up selection) and a decrease (down selection) of the index value on the left wing and compared patterns of fluctuating and directional asymmetry in the selection index and other wing traits across selection lines. Changes in fluctuating asymmetry across selection lines were predominantly small, but we observed a tendency for fluctuating asymmetry to decrease in the up-selected lines in both replicates. Because changes in fluctuating asymmetry depended on the direction of selection, and were not related to changes in trait size, these results fail to support existing hypotheses linking directional selection and developmental stability. Selection also produced a pattern of directional asymmetry that was similar in all selected lines whatever the direction of selection. This result may be interpreted as a release of genetic variance in directional asymmetry under selection.  相似文献   

2.
Contemporary approaches that use fluctuating asymmetry (FA) as a possible target for natural and sexual selection are based on the premise that FA is a quantifiable expression of developmental instability (DI) that is inherited. Previous work with Drosophila buzzatii found that male mating success was correlated positively to body size (wing length) and negatively to FA, but these relationships seem to be environmentally induced. Heritability of FA was low and not significantly different from zero, but statistical power was also estimated to be very low and, hence, no conclusive evidence could be obtained. A large half‐sib mating design is used here to examine the relationships of different aspects of development for wing size. Consistently with previous findings, I found high heritabilities for wing length (WL) and wing width (WW), and positive correlations between both traits. Heritabilities of FA (FAWL, FAWW) were low (0.037) but significantly different from zero, and the genetic correlation between FAWL and FAWW was estimated as ?1 because the absolute value for the genetic covariance was similar in magnitude or even larger than the estimated genetic variances of both traits. This suggests that these two traits should be considered to be the same character. The between‐trait phenotypic correlation in FA, which reduces to the repeatability in this situation, was positive and statistically significant thus rendering an estimate of heritability for DI in D. buzzatii of . Nevertheless, the fact that left/right wing sizes were found to be determined by the same set of genes is difficult to reconcile with the presence of special genetic mechanisms that stabilize left/right development in this species. A qualitatively different pattern for asymmetry was observed when the nonlinear composite character wing area (WA ≈ WL × WW) was used, and . Although the results could be made compatible with the existence of a diallelic locus with antagonistic pleiotropic effects on FAWL and FAWW that combine multiplicatively to produce overdominance for FAWA, the available evidence is extremely weak at best. Finally, a test to the null hypothesis of a nongenetic basis of FA, particularly relevant to those situations when directional asymmetry may be heritable, is suggested.  相似文献   

3.
The width and length variability of both D. melanogaster wings were measured in samples of flies after two and six generations under a permanent magnetic field of 35 mT. While in earlier generations under exposure sexes differ in the size response, later they both show a decrease in the wing size under the magnetic field exposure if compared to the control. The bilateral asymmetry in wings as a potential indicator of developmental instability does not increase significantly under exposure. The ecological and adaptive implications of the change of the magnetic intensity as an environmental factor generating stress in populations is discussed.  相似文献   

4.
In bilateral characters, two kinds of asymmetries are common: fluctuating asymmetry (FA), or nondirectional variation between left and right sides, and directional asymmetry (DA), in which one side is consistently larger than the other. FA has been extensively used as a measure of developmental stability because of its presumed environmental basis whereas DA has not typically been recommended because it has been presumed to have at least some genetic basis. To test these two hypotheses, heritabilities were calculated via parent–offspring regression for both DA and FA in 10 triply measured mandible characters in random-bred mice. Midparent estimates of heritabilities of DA in the 10 characters were quite low (mean = 0.06), but significant for one character as well as the sum of the DA values over all characters (0.21). Midparent estimates of heritability of FA in the 10 characters also were low (mean = 0.03), but not significant for any individual character or the sum of the FA values over all characters. Heritabilities of developmental stability calculated from heritabilities and repeatabilities of FA in the mandible characters were higher in magnitude (mean of midparent estimates = 0.45), but all still were not statistically significant. It was concluded that both hypotheses were supported, but that genetic variation in DA was so small that the potential for DA as an indicator of developmental stability should be explored.  相似文献   

5.
  1. Fluctuating asymmetry (FA) is hypothesized to be a useful predictor of population canalization, especially for organisms at risk from environmental change.
  2. Identification of traits that meet statistical criteria as FA measures remains a challenge.
  3. Here, a laboratory experiment subjected immature butterflies (Vanessa cardui) to diet and temperature conditions of varying stress levels. Variation in dietary macronutrient ratio (protein: carbohydrate) and rearing temperature (optimal: 25°C; elevated: 32°C) was introduced as stressors. Temperature and nutrition are key variables influencing ectotherm growth and fitness and so are likely to be important stressors that influence FA.
  4. Individuals subjected to stressful conditions were predicted to show elevated FA of three wing size traits, as well as increased mortality and decreased adult body size.
  5. Trait FA did not vary across treatments. Instead, treatment levels impacted viability: The combined incidence of pupal death and expression of significant wing malformations increased in treatment levels designated as stressful. Variation in adult dry mass also reflected predicted stress levels. Results suggest that individuals predicted to display increased FA either died or displayed gross developmental aberrations.
  6. This experiment illustrates important constraints on the investigation of FA, including selection of appropriate traits and identification of appropriate levels of stressors to avoid elevated mortality. The latter concern brings into question the utility of FA as an indicator of stress in vulnerable, natural populations, where stress levels cannot be controlled, and mortality and fitness effects are often not quantifiable.
  相似文献   

6.
7.
Antisymmetry,directional asymmetry,and dynamic morphogenesis   总被引:3,自引:1,他引:2  
Fluctuating asymmetry is the most commonly used measure of developmental instability. Some authors have claimed that antisymmetry and directional asymmetry may have a significant genetic basis, thereby rendering these forms of asymmetry useless for studies of developmental instability. Using a modified Rashevsky-Turing reaction-diffusion model of morphogenesis, we show that both antisymmetry and directional asymmetry can arise from symmetry-breaking phase transitions. Concentrations of morphogen on right and left sides can be induced to undergo transitions from phase-locked periodicity, to phase-lagged periodicity, to chaos, by simply changing the levels of feedback and inhibition in the model. The chaotic attractor has two basins of attraction-right sidedominance and left side dominance. With minor disturbance, a developmental trajectory settles into one basin or the other. With increasing disturbance, the trajectory can jump from basin to basin. The changes that lead to phase transitions and chaos are those expected to occur with either genetic change or stress. If we assume that the morphogen influences the behavior of cell populations, then a transition from phase-locked periodicity to chaos in the morphogen produces a corresponding transition from fluctuating asymmetry to antisymmetry in both morphogen concentrations and cell populations. Directional asymmetry is easily modeled by introducing a bias in the conditions of the simulation. We discuss the implications of this model for researchers using fluctuating asymmetry as an indicator of stress.  相似文献   

8.
The relative importance of size and asymmetry in sexual selection   总被引:2,自引:0,他引:2  
Developmental stability reflects the ability of individualsto cope with their environment during ontogeny given their geneticbackground. An inability to cope with environmental and geneticperturbations is reflected in elevated levels of fluctuatingasymmetry and other measures of developmental instability. Bothtrait size and symmetry have been implicated as playing an importantrole in sexual selection, although their relative importancehas never been assessed. We collected information on the relationshipbetween success in sexual competition and size and asymmetry,respectively, to assess the relative importance of these twofactors in sexual selection. Studies that allowed comparisonof the relationships for the same traits' size and symmetryand success in sexual competition constituted the data, whichtotaled 73 samples from 33 studies of 29 species. The averagesample-size weighted correlation coefficients between matingsuccess or attractiveness and size and asymmetry, respectively,were used as measures of effect size in a meta-anatysis. Analysiswas conducted on samples, studies, and species separately. Wefound evidence of an overall larger effect of symmetry at thespecies level of analysis, but similar effects at the sampleor study levels. The difference in effect size for charactersize and character symmetry was larger for secondary sexualcharacters than for ordinary morphological characters at thelevel of analysis of samples. The results lend support to theconclusion that symmetry plays an important general role insexual selection, especially symmetry of secondary sexual characters.  相似文献   

9.
The relationship between developmental stability and morphological asymmetry is derived under the standard view that structures on each side of an individual develop independently and are normally distributed. I use developmental variance of sizes of parts, VD, as the converse of developmental stability, and assume that VD follows a gamma distribution. Repeatability of asymmetry, a measure of how informative asymmetry is about VD, is quite insensitive to the variance in VD, for example only reaching 20% when the coefficient of variation of VD is 100%. The coefficient of variation of asymmetry, CVFA, also increases very slowly with increasing population variation in VD. CVFA values from empirical data are sometimes over 100%, implying that developmental stability is sometimes more variable than any previously studied type of trait. This result suggests that alternatives to this model may be needed.  相似文献   

10.
The occurrence of different forms of asymmetry complicates the analysis and interpretation of patterns in asymmetry. Furthermore, between-individual heterogeneity in developmental stability (DS) and thus fluctuating asymmetry (FA), is required to find relationships between DS and other factors. Separating directional asymmetry (DA) and antisymmetry (AS) from real FA and understanding between-individual heterogeneity in FA is therefore crucial in the analysis and interpretation of patterns in asymmetry. In this paper we introduce and explore mixture analysis to (i) identify FA, DA and AS from the distribution of the signed asymmetry, and (ii) to model and quantify between-individual heterogeneity in developmental stability and FA. In addition, we expand mixtures to the estimation of the proportion of variation in the unsigned FA that can be attributed to between-individual heterogeneity in the presumed underlying developmental stability (the so-called hypothetical repeatability). Finally, we construct weighted normal probability plots to investigate the assumption of underlying normality of the different components. We specifically show that (i) model selection based on the likelihood ratio test has the potential to yield models that incorporate nearly all heterogeneity in FA; (ii) mixtures appear to be a powerful and sensitive statistical technique to identify the different forms of asymmetry; (iii) restricted measurement accuracy and the occurrence of many zero observations results in an overestimation of the hypothetical repeatability on the basis of the model parameters; and (iv) as judged from the high correlation coefficients of the normal probability plots, the underlying normality assumption appears to hold for the empirical data we analysed. In conclusion, mixtures provide a useful statistical tool to study patterns in asymmetry.  相似文献   

11.
Fluctuating asymmetry (FA) is often used as a measure of underlying developmental instability (DI), motivated by the idea that morphological variance is maladaptive. Whether or not DI has evolutionary potential is a highly disputed topic, marred by methodological problems and fuzzy prejudices. We report here some results from an ongoing study of the effects of karyotype, homozygosity and temperature on wing form and bilateral asymmetry using isochromosomal lines ofDrosophila subobscura. Our approach uses the recently developed methodologies in geometric morphometrics to analyse shape configurations of landmarks within the standard statistical framework employed in studies of bilateral asymmetries, and we have extended these methods to partition the individual variation and the variation in asymmetries into genetic and environmental causal components. The analyses revealed temperaturedependent expression of genetic variation for wing size and wing shape, directional asymmetry (DA) of wing size, increased asymmetries at suboptimal temperature, and a transition from FA to DA in males as a result of increase in the rearing temperature. No genetic variation was generally detected for FA in our samples, but these are preliminary results because no crosses between lines were carried out and, therefore, the contribution of dominance was not taken into account. In addition, only a subset of the standing genetic variation was represented in the experiments.  相似文献   

12.
Habitat fragmentation has the potential to influence the development and thus the phenotype of organisms. The asymmetry of bilateral traits may be indicative of the extent to which developmental stability is compromised by the stressful conditions underlying fragmentation. Using an assemblage- and population-level approach, we explored asymmetry differences in tarsus and outermost tail feathers of birds inhabiting fragmented landscapes in the tropical Andes of Colombia. More than 2500 individuals of 185 species were mist-netted at nine forest sites representing continuous forest (> 1000 ha), medium- (70–110 ha), and small-sized (8–20 ha) fragments. Feathers showed true fluctuating asymmetry (FA), whereas tarsus presented a mixture of FA and directional asymmetry. Overall, asymmetry was lowest in continuous forest, and highest in small and medium fragments. These patterns remained unchanged when directionality and differences in species composition, abundance, and foraging tactics were considered. The population-level analyses showed a general trend of increased asymmetry variation in fragments, yet the responses were not always in the same direction. Increased asymmetry may represent an outcome of processes that contribute to the persistence of species in changing environments, and to the generation of phenotypic innovation, which suggests individual adjustments of development to deal with stress. This calls into question the deliberated application of FA as a biomonitoring tool for conservation.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 119–133.  相似文献   

13.
14.
Developmental instability, measured as fluctuating asymmetry (FA) in bilateral traits, has been used widely as an indicator of genetic or environmental stress in a variety of plant and animal taxa. FA arises as small deviations from perfect bilateral symmetry which reflect 'mistakes' in developmental processes resulting from the inability of the genotype to buffer itself effectively against environmental perturbations. Recently, it has been proposed that FA in the otoliths can be used as an indicator of condition in larval fish. This paper reviews the conceptual and methodological aspects of FA relevant to its potential use as a measure of well-being. Its simplicity makes FA an attractive tool to measure developmental precision and condition. However, there are several pitfalls, such as measuring error or potentially size dependence. Subtle asymmetries, i.e. between sides variation of a trait at the individual level, may not always be indicative of condition and should be interpreted with caution. The past-growth record of otoliths may provide a powerful means of studying the development of asymmetries at the level of the individual.  相似文献   

15.
Mandibles from 13 island and six mainland populations of common shrews from the west coast of Scotland were subjected to geometric morphometric analysis in order to investigate the relationship between genetic diversity and fluctuating asymmetry. Although population mean shape fluctuating asymmetry (FA) and size FA were significantly inversely correlated with population genetic diversity this result was substantially due to one island. Sanda, the smallest island with by far the lowest genetic diversity, also had the highest FA. When Sanda was removed from the analysis, the relationship was not significant. There was no relationship between genetic diversity and FA at the individual level, whether measured as mean locus heterozygosity or d(2). In general, if genetic variation affects FA at all, the effect is weak and may only be of biological interest in very small populations.  相似文献   

16.
The idea that symmetry in facial traits is associated with attractiveness because it reliably indicates good physiological health, particularly to potential sexual partners, has generated an extensive literature on the evolution of human mate choice. However, large-scale tests of this hypothesis using direct or longitudinal assessments of physiological health are lacking. Here, we investigate relationships between facial fluctuating asymmetry (FA) and detailed individual health histories in a sample (n = 4732) derived from a large longitudinal study (Avon Longitudinal Study of Parents and Children) in South West England. Facial FA was assessed using geometric morphometric analysis of facial landmark configurations derived from three-dimensional facial scans taken at 15 years of age. Facial FA was not associated with longitudinal measures of childhood health. However, there was a very small negative association between facial FA and IQ that remained significant after correcting for a positive allometric relationship between FA and face size. Overall, this study does not support the idea that facial symmetry acts as a reliable cue to physiological health. Consequently, if preferences for facial symmetry do represent an evolved adaptation, then they probably function not to provide marginal fitness benefits by choosing between relatively healthy individuals on the basis of small differences in FA, but rather evolved to motivate avoidance of markers of substantial developmental disturbance and significant pathology.  相似文献   

17.
Nonlinear growth dynamics and the origin of fluctuating asymmetry   总被引:2,自引:0,他引:2  
  相似文献   

18.
In the dung fly Sepsis cynipsea large and more symmetric males have been shown to enjoy a mating advantage, but we still do not know which mechanism of sexual selection is responsible. Here we test several assumptions and predictions relating to the hypothesis that either trait is indicative of ‘good genes’. We tested for good genes by regressing fitness in good and bad environments (no and high larval competition, respectively) on the family mean for size or asymmetry as expressed in the good environment, separately for both sexes. Body size (hind tibia length or head width) was positively correlated with female fecundity, growth rate of both sexes and larval survivorship for males, but only in the good environment. The corresponding evidence for asymmetry is more equivocal. Mean standardised asymmetry was weakly associated with lower survivorship in the good environment, while growth rates and female fecundity were not. As predicted by sexual selection theory, fore tibia length showed greater asymmetry than other, presumably not sexually selected traits, and asymmetry in fore tibia length was greater for males than females. However, a negative correlation between trait size and asymmetry was only evident for male seta length but not for fore tibia length, fore femur length, or any composite measure of asymmetry. Most crucially, asymmetry was heritable for some female morphological traits (hind tibia length: h2 = 0.15; fore femur length: h2 = 0.16; mean of all measured traits: h2 = 0.27), but not for any male trait. Also, asymmetry of the various traits measured was not correlated within males and only weakly so within females. The crucial assumption that asymmetry of sexually selected traits reflects overall, heritable developmental stability of an individual is thus only partly substantiated by our data. In contrast, large body size is heritable, associated with high fitness and consequently could be indicative of good genes. Fore leg asymmetry may influence male mating success by simply mechanically constraining his ability to hold on to the female.  相似文献   

19.
Secondary sexual characters have been hypothesized to demonstrate increased phenotypic variation between and within individuals as compared to ordinary morphological traits. We tested whether this was the case by studying phenotypic variation, expressed as the coefficient of variation (CV), and developmental instability, measured as fluctuating asymmetry (FA), in ornamental and non-ornamental traits of 70 bird species with feather ornamentation while controlling for similarity among species due to common descent. Secondary sexual characters differed from ordinary morphological traits by showing large phenotypic CV and FA. This difference can be explained by the different mode of selection operating on each kind of trait: a history of intense directional (ornaments) and stabilizing selection (non-ornaments). Phenotypic variation is reduced in the sex with more intense sexual selection (males), but does not differ among species with different mating systems. The strength of stabilizing selection arising from natural selection is associated with decreased CV (wing CV is smaller than tarsus or tail CVs). We found evidence of FA being reduced in ornamental feathers strongly affected by aerodynamics (tail feathers) compared to other ornaments, but only in females. In conclusion, CV and FA were not related, suggesting mat phenotypic plasticity and developmental instability are independent components of phenotypic variation.  相似文献   

20.
We studied patterns of fluctuating asymmetry (FA) in leaves of four populations of the neotropical vine Dalechampia scandens to obtain insight into the origin of leaf FA and the level at which it is controlled. We analysed correlations in signed and unsigned asymmetry at different organizational levels. We also analysed the ontogeny of FA during leaf expansion to test whether asymmetry is regulated during cell expansion, and whether fast-expanding leaves are more or less asymmetrical. Signed asymmetry was negatively correlated between successive leaves, that is, when the right side of a leaf was larger than the left side, the next leaf on the shoot tended to show the opposite pattern. The magnitude of FA, however, was very weakly correlated among successive leaves or among leaves measured on different shoots. The direction of asymmetry did not change during leaf expansion, but the relative asymmetry, that is, asymmetry corrected for difference in trait size, decreased during expansion. We found a weak negative relationship between leaf expansion rate and relative asymmetry on the fully expanded leaves. These results suggest that leaf asymmetry in Dalechampia originates from perturbations in cell proliferation in the stem, creating asymmetries in opposite directions in successive leaves. These asymmetries persist during leaf expansion, but tend to be reduced by unknown mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号