首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In all ecosystems, bacteria are the most numerous organisms and through them flows a large fraction of annual primary production. In the past decade we have learned a great deal about some of the factors that regulate bacteria and their activities, and how these activities, in turn, alter ecosystem-level processes. Here I review three areas in which recent progress has been made with particular reference to pelagic ecosystems: the problem of bacterial cell dormancy; the effect of solar radiation on organic matter lability; and, the maintenance of net heterotrophy. In a system in which grazing is the major source of mortality for bacteria, bacterial cell dormancy is something of a paradox. I argue that the degree to which bacteria are grazed by flagellates (highly selective grazers) versus other grazers (cladocerans, bivalves) may explain the degree and variation in the proportion of active cells which recent evidence shows to be large. Another factor affecting bacterial activity that has come to the fore in recent years is solar radiation. Irradiation, especially in the ultra-violet range has long been thought of as simply deleterious to some bacteria. A wealth of newer evidence shows that refractory dissolved organic compounds may be converted into microbially labile compounds by solar radiation in several wavebands. This interaction between irradiation and organic matter (photolysis) may explain, in part, how dissolved organic carbon (C) may be refractory in the dark environment of the soil but become labile in the illumunated surface waters of lakes or rivers. The newer evidence shows that aquatic ecosystems, at least oligotrophic ones, are significantly subsidized by terrestrially-produced organic matter. I review here multiple lines of evidence that suggest that freshwater ecosystems are predominantly systems which respire more organic C than they produce by photosynthesis, and are therefore net heterotrophic. While net heterotrophy is an interesting exception for terrestrial ecosystems, it appears to be commonplace for aquatic systems and represents an important linkage between terrestrial and aquatic ecosystems.  相似文献   

3.
Heterotrophy is known to stimulate calcification of scleractinian corals, possibly through enhanced organic matrix synthesis and photosynthesis, and increased supply of metabolic DIC. In contrast to the positive long-term effects of heterotrophy, inhibition of calcification has been observed during feeding, which may be explained by a temporal oxygen limitation in coral tissue. To test this hypothesis, we measured the short-term effects of zooplankton feeding on light and dark calcification rates of the scleractinian coral Galaxea fascicularis (n = 4) at oxygen saturation levels ranging from 13 to 280%. Significant main and interactive effects of oxygen, heterotrophy and light on calcification rates were found (three-way factorial repeated measures ANOVA, p<0.05). Light and dark calcification rates of unfed corals were severely affected by hypoxia and hyperoxia, with optimal rates at 110% saturation. Light calcification rates of fed corals exhibited a similar trend, with highest rates at 150% saturation. In contrast, dark calcification rates of fed corals were close to zero under all oxygen saturations. We conclude that oxygen exerts a strong control over light and dark calcification rates of corals, and propose that in situ calcification rates are highly dynamic. Nevertheless, the inhibitory effect of heterotrophy on dark calcification appears to be oxygen-independent. We hypothesize that dark calcification is impaired during zooplankton feeding by a temporal decrease of the pH and aragonite saturation state of the calcifying medium, caused by increased respiration rates. This may invoke a transient reallocation of metabolic energy to soft tissue growth and organic matrix synthesis. These insights enhance our understanding of how oxygen and heterotrophy affect coral calcification, both in situ as well as in aquaculture.  相似文献   

4.
Increased precipitation is one projected outcome of climate change that may enhance the discharge of freshwater to the coastal zone. The resulting lower salinity, and associated discharge of both nutrients and dissolved organic carbon, may influence food web functioning. The scope of this study was to determine the net outcome of increased freshwater discharge on the balance between auto‐ and heterotrophic processes in the coastal zone. By using long‐term ecological time series data covering 13 years, we show that increased river discharge suppresses phytoplankton biomass production and shifts the carbon flow towards microbial heterotrophy. A 76% increase in freshwater discharge resulted in a 2.2 times higher ratio of bacterio‐ to phytoplankton production (Pb:Pp). The level of Pb:Pp is a function of riverine total organic carbon supply to the coastal zone. This is mainly due to the negative effect of freshwater and total organic carbon discharge on phytoplankton growth, despite a concomitant increase in discharge of nitrogen and phosphorus. With a time lag of 2 years the bacterial production recovered after an initial decline, further synergistically elevating the microbial heterotrophy. Current climate change projections suggesting increased precipitation may therefore lead to increased microbial heterotrophy, thereby decreasing the transfer efficiency of biomass to higher trophic levels. This prognosis would suggest reduced fish production and lower sedimentation rates of phytoplankton, a factor of detriment to benthic fauna. Our findings show that discharge of freshwater and total organic carbon significantly contributes to the balance of coastal processes at large spatial and temporal scales, and that model's would be greatly augmented by the inclusion of these environmental drivers as regulators of coastal productivity.  相似文献   

5.
During the unstratified (winter) and stratified (summer) periods of 1999 and 2000, we examined carbon (C) dynamics in the upper water column of southern Lake Michigan. We found that (a) bacterial respiration (BR) and planktonic respiration (PR) were major sinks for C, (b) C flux through bacteria (CFTB) was diminished in winter because of reduced bacterial production (BP) and increased bacterial growth efficiency (BGE) at colder temperatures, and (c) PR exceeded primary production (PP) during the spring–summer transition. Drawdown of dissolved organic C (DOC), resuspended organic matter from the lake floor, and riverine organic matter likely provided organic C to compensate for this temporal deficit. DOC in the water column decreased between winter and summer (29–91 mg C m2 d−1) and accounted for 20%–53% of CFTB and 11%–33% of PR. Sediment resuspension events supported elevated winter heterotrophy in the years that they occurred with greatest intensities (1998 and 2000) and may be important to interannual variability in C dynamics. Further, riverine discharge, containing elevated DOC (5×) and dissolved P (10×) relative to lake water, peaked in the winter–spring season in southern Lake Michigan. Collectively, terrigenous inputs (river, stream, and groundwater discharges; storm water runoff; and atmospheric precipitation) may support approximately 10%–20% of annual in-lake heterotrophy as well as autotrophy. Terrestrial subsidies likely play a key role in the C balance of even very large lakes, representing a critical linkage between terrestrial and aquatic ecosystems. Received 11 June 2001; Accepted 14 December 2001.  相似文献   

6.
7.
Major biogeochemical processes in the water columns of lakes and oceans are related to the activities of heterotrophic microbes, e.g., the mineralization of organic carbon from photosynthesis and allochthonous influx or its transport to the higher trophic levels. During the last 15 years, cultivation-independent molecular techniques have substantially contributed to our understanding of the diversity of the microbial communities in different aquatic systems. In parallel, the complexity of aquatic habitats at a microscale has inspired research on the ecophysiological properties of uncultured microorganisms that thrive in a continuum of dissolved to particulate organic matter. One possibility to link these two aspects is to adopt a"Gleasonian" perspective, i.e., to study aquatic microbial assemblages in situ at the population level rather than looking at microbial community structure, diversity, or function as a whole. This review compiles current knowledge about the role and fate of different populations of heterotrophic picoplankton in marine and inland waters. Specifically, we focus on a growing suite of techniques that link the analysis of bacterial identity with growth, morphology, and various physiological activities at the level of single cells. An overview is given of the potential and limitations of methodological approaches, and factors that might control the population sizes of different microbes in pelagic habitats are discussed.  相似文献   

8.
Major biogeochemical processes in the water columns of lakes and oceans are related to the activities of heterotrophic microbes, e.g., the mineralization of organic carbon from photosynthesis and allochthonous influx or its transport to the higher trophic levels. During the last 15 years, cultivation-independent molecular techniques have substantially contributed to our understanding of the diversity of the microbial communities in different aquatic systems. In parallel, the complexity of aquatic habitats at a microscale has inspired research on the ecophysiological properties of uncultured microorganisms that thrive in a continuum of dissolved to particulate organic matter. One possibility to link these two aspects is to adopt a “Gleasonian” perspective, i.e., to study aquatic microbial assemblages in situ at the population level rather than looking at microbial community structure, diversity, or function as a whole. This review compiles current knowledge about the role and fate of different populations of heterotrophic picoplankton in marine and inland waters. Specifically, we focus on a growing suite of techniques that link the analysis of bacterial identity with growth, morphology, and various physiological activities at the level of single cells. An overview is given of the potential and limitations of methodological approaches, and factors that might control the population sizes of different microbes in pelagic habitats are discussed.  相似文献   

9.
Loss-on-ignition and carbon content in a beech forest soil profile   总被引:2,自引:0,他引:2  
The use of loss-on-ignition (LOI) and carbon content (C-content) in estimating soil organic matter is examined. To evaluate the assumptions behind the use of these methods, the conversion factor (LOI/C-content) is examined as a function of depth and spatial variability.
Due to increasing variability with depth no general relationship between LOI and C-content can be established for horizons below 60 cm. For horizons above 60 cm it is demonstrated, that more than one conversion factor is needed.
The application of a regression equation to correct for inorganic losses is shown to be problematical. This is due to the variability in inorganic losses and the varying C-content of the organic matter.  相似文献   

10.
Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and thus several types of biosurfactants have the potential to be commercially produced for extensive applications in pharmaceutical, cosmetics, and food industries. The biosurfactants synthesized by environmental isolates also has promising role in the agricultural industry. Many rhizosphere and plant associated microbes produce biosurfactant; these biomolecules play vital role in motility, signaling, and biofilm formation, indicating that biosurfactant governs plant–microbe interaction. In agriculture, biosurfactants can be used for plant pathogen elimination and for increasing the bioavailability of nutrient for beneficial plant associated microbes. Biosurfactants can widely be applied for improving the agricultural soil quality by soil remediation. These biomolecules can replace the harsh surfactant presently being used in million dollar pesticide industries. Thus, exploring biosurfactants from environmental isolates for investigating their potential role in plant growth promotion and other related agricultural applications warrants details research. Conventional methods are followed for screening the microbial population for production of biosurfactant. However, molecular methods are fewer in reaching biosurfactants from diverse microbial population and there is need to explore novel biosurfactant from uncultured microbes in soil biosphere by using advanced methodologies like functional metagenomics.  相似文献   

11.
微生物群落多样性是微生物生态学和环境学研究的重点之一。分子生物学方法应用于微生物群落结构分析使得对环境样品中占大多数的不可培养微生物的研究成为了可能。由于功能上高度保守,序列上的不同位置具有不同的变异速率,核糖体RNA(rRNA)是目前在微生物分子生态学上最为有用以及应用最广泛的分子标记,通过rRNA序列比对,可以分析不同分类水平的系统发育关系。元基因组学研究方法通过对环境样品中的各种微生物群落的总的基因组进行分析,充分展示了环境微生物代谢途径,极大地扩展了对微生物的认识。快速发展的高通量测序极大地促进了各项微生物生态学技术的发展,带来了新的突破。  相似文献   

12.
Hydrologic changes associated with urbanization often lead to lower water tables and drier, more aerobic soils in riparian zones. These changes reduce the potential for denitrification, an anaerobic microbial process that converts nitrate, a common water pollutant, into nitrogen gas. In addition to oxygen, denitrification is controlled by soil organic matter and nitrate. Geomorphic stream restorations are common in urban areas, but their effects on riparian soil conditions and denitrification have not been evaluated. We measured root biomass, soil organic matter, and denitrification potential (anaerobic slurry assay) at four depths in duplicate degraded, restored, and reference riparian zones in the Baltimore, Maryland, U.S.A., metropolitan area. There were three main findings in this study. First, although reference sites were wet and had high soil organic matter, they had low levels of nitrate relative to degraded and restored sites and therefore there were few differences in denitrification potential among sites. Evaluations of riparian restorations that have nitrate removal by denitrification as a goal should consider the complex controls of this process and how they vary between sites. Second, all variables declined markedly with depth in the soil. Restorations that increase riparian water tables will thus foster interaction of groundwater nitrate with near-surface soils with higher denitrification potential. Third, we observed strong positive relationships between root biomass and soil organic matter and between soil organic matter and denitrification potential, which suggest that establishment of deep-rooted vegetation may be particularly important for increasing the depth of the active denitrification zone in restored riparian zones.  相似文献   

13.
Sediment cores were collected from an area off the west coast of Norway, where a well-established kelp community made up mainly of Laminaria hyperborea is found. Chemical analyses of the sectioned sediment cores were made, which included organic carbon, carbohydrates and phenols. These were used to collate the sediments in order to establish whether the different sites had a common origin and if this was kelp-related. The organic matter content in the surface sediments appears to be related to the water depth, which determines the degree of perturbation at the sediment-water boundary and hence the sedimentation of the organic matter. The relation between carbohydrates and phenols in the sediment appears to indicate a common origin. However, the carbohydrate and phenol content in the sediment organic fraction appears to closely resemble (to be analogous) to that of the kelp Laminaria hyperborea. Although there are some diagenetic and decomposition changes in the subsurface (historical) organic matter (that may alter its findings), this study provides good evidence that the deposits were supplied by the kelp forest in the region. The sedimentation and export of kelp-derived material is of particular significance in terms of benthic ecology and production and may also play a significant role in the global carbon budget.  相似文献   

14.
15.
The remineralization of organic material via heterotrophy in the marine environment is performed by a diverse and varied group of microorganisms that can specialize in the type of organic material degraded and the niche they occupy. The marine Dadabacteria are cosmopolitan in the marine environment and belong to a candidate phylum for which there has not been a comprehensive assessment of the available genomic data to date. Here in, we assess the functional potential of the marine pelagic Dadabacteria in comparison to members of the phylum that originate from terrestrial, hydrothermal, and subsurface environments. Our analysis reveals that the marine pelagic Dadabacteria have streamlined genomes, corresponding to smaller genome sizes and lower nitrogen content of their DNA and predicted proteome, relative to their phylogenetic counterparts. Collectively, the Dadabacteria have the potential to degrade microbial dissolved organic matter, specifically peptidoglycan and phospholipids. The marine Dadabacteria belong to two clades with apparent distinct ecological niches in global metagenomic data: a clade with the potential for photoheterotrophy through the use of proteorhodopsin, present predominantly in surface waters up to 100 m depth; and a clade lacking the potential for photoheterotrophy that is more abundant in the deep photic zone.Subject terms: Water microbiology, Marine microbiology, Metagenomics, Microbial ecology  相似文献   

16.
The diversity of heterotrophic flagellates is generally based on cultivated strains, on which ultrastructural, physiological, and molecular studies have been performed. However, the relevance of these cultured strains as models of the dominant heterotrophic flagellates in the marine planktonic environment is unclear. In fact, molecular surveys typically recover novel eukaryotic lineages that have refused cultivation so far. This study was designed to directly address the culturing bias in planktonic marine heterotrophic flagellates. Several microcosms were established adding increasing amounts and sources of organic matter to a confined natural microbial community pre-filtered by 3 μm. Growth dynamics were followed by epifluorescence microscopy and showed the expected higher yield of bacteria and heterotrophic flagellates at increased organic matter additions. Moreover, protist diversity analyzed by molecular tools showed a clear substitution in the community, which differed more and more from the initial sample as the organic matter increased. Within this gradient, there was also an increase of sequences related to cultured organisms as well as a decrease in diversity. Culturing bias is partly explained by the use of organic matter in the isolation process, which drives a shift in the community to conditions closer to laboratory cultures. An intensive culturing effort using alternative isolation methods is necessary to allow the access to the missing heterotrophic flagellates that constitute the abundant and active taxa in marine systems.  相似文献   

17.
The distribution and accumulation of organic matter, nitrogen (N) and phosphorus (P) in mangrove soils at four sites along the Shark River estuary of south Florida were investigated with empirical measures and a process-based model. The mangrove nutrient model (NUMAN) was developed from the SEMIDEC marsh organic matter model and parameterized with data from mangrove wetlands. The soil characteristics in the four mangrove sites varied greatly in both concentrations and profiles of soil carbon, N and P. Organic matter decreased from 82% in the upstream locations to 30% in the marine sites. Comparisons of simulated and observed results demonstrated that landscape gradients of soil characteristics along the estuary can be adequately modeled by accounting for plant production, litter decomposition and export, and allochthonous input of mineral sediments. Model sensitivity analyses suggest that root production has a more significant effect on soil composition than litter fall. Model simulations showed that the greatest change in organic matter, N, and P occurred from the soil surface to 5 cm depth. The rapid decomposition of labile organic matter was responsible for this decrease in organic matter. Simulated N mineralization rates decreased quickly with depth, which corresponded with the decrease of labile organic matter. The increase in organic matter content and decrease in soil bulk density from mangrove sites at downstream locations compared to those at upstream locations was controlled mainly by variation in allochthonous inputs of mineral matter at the mouth of the estuary, along with gradients in mangrove root production. Research on allochthonouns sediment input and in situ root production of mangroves is limited compared to their significance to understanding nutrient biogeochemistry of these wetlands. More accurate simulations of temporal patterns of nutrient characteristics with depth will depend on including the effects of disturbance such as hurricanes on sediment redistribution and biomass production.  相似文献   

18.
18 Swedish forest lakes covering a wide range of dystrophy were studied in order to quantify and characterize the organic matter in the water with respect to origin (allochthonous or autochthonous), physical state (particulate or dissolved) and phosphorus content. Samples were collected repeatedly during a two-year period with unusually variable hydrological conditions. Water from three different depths and from tributaries was analysed with standard monitoring methods, including water colour, Secchi disk transparency, total organic carbon (TOC), CODCr, CODMn, total phosphorus and molybdate reactive phosphorus. Interrelationships were used to compare different methods and to assess the concentration and composition of organic matter. It is estimated that in remote softwater lakes of the Swedish forest region, autochthonous carbon is typically < 5 g m−3. Most lakes in this region receive significant amounts of humic matter originating from coniferous forest soils or peatland in the catchment area. In most humic lakes with a water colour of ≥ 50 g Pt m−3, more than half of the organic carbon in the surface water is of allochthonous origin, and in polyhumic lakes (> 200 g Pt m−3) the proportion can exceed 90%. Secchi depth readings were related similarly to organic matter from both sources and provided good estimates of TOC with a single optical measurement. Water colour was used to distinguish allochthonous and autochthonous matter. High concentrations of phosphorus were found in humic waters, most of it being molybdate reactive, and probably associated with humic matter rather than as dissolved free inorganic forms. CODMn yielded only 25–60% of TOC and appears to include mainly truly dissolved substances of low molecular weight.  相似文献   

19.
20.
Molecular ecology has become one of the key tools in the modern conservationist's kit. Here we review three areas where molecular ecology has been applied to amphibian conservation: genes on landscapes, within‐population processes, and genes that matter. We summarize relevant analytical methods, recent important studies from the amphibian literature, and conservation implications for each section. Finally, we include five in‐depth examples of how molecular ecology has been successfully applied to specific amphibian systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号