首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sulfur:ferric ion oxidoreductase that utilizes ferric ion (Fe3+) as an electron acceptor of elemental sulfur was purified from iron-grown Thiobacillus ferrooxidans to an electrophoretically homogeneous state. Under anaerobic conditions in the presence of Fe3+, the enzyme reduced 4 mol of Fe3+ with 1 mol of elemental sulfur to give 4 mol of Fe2+ and 1 mol of sulfite, indicating that it corresponds to a ferric ion-reducing system (T. Sugio, C. Domatsu, O. Munakata, T. Tano, and K. Imai, Appl. Environ. Microbiol. 49:1401-1406, 1985). Under aerobic conditions, sulfite, but not Fe2+, was produced during the oxidation of elemental sulfur by this enzyme because the Fe2+ produced was rapidly reoxidized chemically by molecular oxygen. The possibility that Fe3+ serves as an electron acceptor under aerobic conditions was ascertained by adding o-phenanthroline, which chelates Fe2+, to the reaction mixture. Sulfur:ferric ion oxidoreductase had an apparent molecular weight of 46,000, and it is composed of two identical subunits (Mr = 23,000) as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Sulfur oxidation by this enzyme was absolutely dependent on the presence of reduced glutathione. The enzyme had an isoelectric point and a pH optimum at pH 4.6 and 6.5, respectively. Almost all the activity of sulfur:ferric ion oxidoreductase was observed in the osmotic shock fluid of the cells, suggesting that it was localized in the periplasmic space of the cells.  相似文献   

2.
When grown on iron-salt medium supplemented with the bisulfite ion, Leptospirillum ferrooxidans was much more sensitive to the ion than was Thiobacillus ferrooxidans. The causes of the sensitivity of L. ferrooxidans to the bisulfite ion were studied. The bisulfite ion completely inhibited the iron-oxidizing activities of L. ferrooxidans and T. ferrooxidans at 0.02 and 0.2 mM, respectively. A trapping reagent for the bisulfite ion, formaldehyde, completely reversed the inhibition. The treatment of intact cells with 1.0 mM bisulfite ion for 1 h and washing the bisulfite ion from the cells had no harmful effects on the iron-oxidizing activity of T. ferrooxidans. However, the treatment of L. ferrooxidans with 0.1 mM bisulfite ion for 1 h completely destroyed the iron-oxidizing activity. T. ferrooxidans had sulfite:ferric ion oxidoreductase activity. In contrast, a quite low level of sulfite:ferric ion oxidoreductase activity was found in L. ferrooxidans, suggesting that it is much more difficult for L. ferrooxidans to oxidize the bisulfite ion to the less harmful sulfate than it is for T. ferrooxidans. These results suggest that the sensitivity of L. ferrooxidans to the bisulfite ion is due to a lack of an active sulfite:ferric ion oxidoreductase and the sensitivity of its iron oxidase to bisulfite ion.  相似文献   

3.
In Thiobacillus ferrooxidans AP19-3, elemental sulfur is oxidized by the cooperation of three enzymes, namely, hydrogen sulfide: ferric ion oxidoreductase (SFORase), sulfite: ferric ion oxidoreductase, and iron oxidase. Sulfite ions are one of the products when elemental sulfur is oxidized by SFORase. Under the conditions in which sulfite ions are accumulated in the cells, use of sulfur as an energy source by this strain was strongly inhibited. So the mechanism of inhibition by sulfite ions in T. ferrooxidans AP19-3 was studied. The activities of SFORase and iron oxidase were completely inhibited by 0.8 mm and 1.5 mm NaHSO3, respectively. 14CO2 uptake into washed intact cells was also completely inhibited by 1mm NaHSO3 when ferrous ion or elemental sulfur was used as an energy source. However, the activities of ribulose-1,5-bisphosphate carboxylase, phosphoribulokinase, and ribosephosphate isomerase measured with a cell-free extract were not inhibited by NaHSO3 at 1 mm, indicating that sulfite ions didn’t inhibit key enzymes of the Calvin cycle. Since the activity of CO2 uptake into washed intact cells was absolutely dependent on Fe2 + - or S0-oxidation, mechanism of inhibition of sulfur use by sulfite ions is proposed as follows: sulfite ions inhibit SFORase and iron oxidase, as a result T. ferrooxidans AP19-3 can not obtain a carbon source for CO2 fixation and stops cell growth on sulfur-salts medium.  相似文献   

4.
Abstract: Cell-free extracts of Methanosarcina frisia contain high thiosulfate sulfur transferase (TST) (rhodanese), slight thiosulfate reductase but no thiosulfate: acceptor oxidoreductase activity. Neither adenylylsulfate reductase nor sulfite: acceptor oxidoreductase activity could be detected. TST is an acidic protein with an M r of 25 000 and was enriched by ion-exchange chromatography and gel filtration. The enzyme has a temperature optimum at 60°C and a pH optimum at pH 11. The K m values for thiosulfate and cyanide are 0.53 mM and 1.57 mM, respectively. Low concentrations of cysteine, glutathione, dithioerythritol, and dihydrolipoate increase the activity of the enzyme while unphysiological concentrations of these effectors cause a decrease. Sulfite and N -bromosuccinimide inhibit the energy activity extremely.  相似文献   

5.
The existence of a hydrogen sulfide:ferric ion oxidoreductase, which catalyzes the oxidation of elemental sulfur with ferric ions as an electron acceptor to produce ferrous and sulfite ions, was assayed with washed intact cells and cell extracts of various kinds of iron-oxidizing bacteria, such as Thiobacillus ferrooxidans 13598, 13661, 14119, 19859, 21834, 23270, and 33020 from the American Type Culture Collection, Leptospirillum ferrooxidans 2705 and 2391 from the Deutsche Sammlung von Mikroorganismen, L. ferrooxidans BKM-6-1339 and P3A, and moderately thermophilic iron-oxidizing bacterial strains BC1, TH3, and Alv. It was found that hydrogen sulfide:ferric ion oxidoreductase activity comparable to that of T. ferrooxidans AP19-3 was present in all iron-oxidizing bacteria tested, suggesting a wide distribution of this enzyme in iron-oxidizing bacteria.  相似文献   

6.
In the presence of phosphate ions, molybdic ions (Mo6+) were reduced enzymatically with elemental sulfur by washed intact cells of Thiobacillus ferrooxidans to give molybdenum blue. The whole-cell activity that reduced Mo6+ was totally due to cellular sulfur:ferric ion oxidoreductase (SFORase) (T. Sugio, W. Mizunashi, K. Inagaki, and T. Tano, J. Bacteriol. 169:4916-4922, 1987). The activity of M06+ reduction with elemental sulfur was competitively inhibited by Fe3+, Cu2+, and Co2+. The Michaelis constant of SFORase for Mo6+ was 7.6 mM, and the inhibition constants for Fe3+, Cu2+, and Co2+ were 0.084, 0.015, and 0.17 mM, respectively, suggesting that SFORase can reduce not only Fe3+ and Mo6+ but also Cu2+ and Co2+ with elemental sulfur.  相似文献   

7.
A new type of sulfite oxidase which utilizes ferric ion (Fe3+) as an electron acceptor was found in iron-grown Thiobacillus ferrooxidans. It was localized in the plasma membrane of the bacterium and had a pH optimum at 6.0. Under aerobic conditions, 1 mol of sulfite was oxidized by the enzyme to produce 1 mol of sulfate. Under anaerobic conditions in the presence of Fe3+, sulfite was oxidized by the enzyme as rapidly as it was under aerobic conditions. In the presence of o-phenanthroline or a chelator for Fe2+, the production of Fe2+ was observed during sulfite oxidation by this enzyme under not only anaerobic conditions but also aerobic conditions. No Fe2+ production was observed in the absence of o-phenanthroline, suggesting that the Fe2+ produced was rapidly reoxidized by molecular oxygen. Neither cytochrome c nor ferricyanide, both of which are electron acceptors for other sulfite oxidases, served as an electron acceptor for the sulfite oxidase of T. ferrooxidans. The enzyme was strongly inhibited by chelating agents for Fe3+. The physiological role of sulfite oxidase in sulfur oxidation of T. ferrooxidans is discussed.  相似文献   

8.
A new type of sulfite oxidase which utilizes ferric ion (Fe3+) as an electron acceptor was found in iron-grown Thiobacillus ferrooxidans. It was localized in the plasma membrane of the bacterium and had a pH optimum at 6.0. Under aerobic conditions, 1 mol of sulfite was oxidized by the enzyme to produce 1 mol of sulfate. Under anaerobic conditions in the presence of Fe3+, sulfite was oxidized by the enzyme as rapidly as it was under aerobic conditions. In the presence of o-phenanthroline or a chelator for Fe2+, the production of Fe2+ was observed during sulfite oxidation by this enzyme under not only anaerobic conditions but also aerobic conditions. No Fe2+ production was observed in the absence of o-phenanthroline, suggesting that the Fe2+ produced was rapidly reoxidized by molecular oxygen. Neither cytochrome c nor ferricyanide, both of which are electron acceptors for other sulfite oxidases, served as an electron acceptor for the sulfite oxidase of T. ferrooxidans. The enzyme was strongly inhibited by chelating agents for Fe3+. The physiological role of sulfite oxidase in sulfur oxidation of T. ferrooxidans is discussed.  相似文献   

9.
10.
Lactic acid bacteria isolated from an industrial-scale ethanol fermentation process were used to evaluate sulfite as a bacterial-contamination control agent in a cell-recycled continuous ethanol fermentation process. The viabilities of bacteria were decreased by sulfite at concentrations of 100 to 400 mg liter-1, while sulfite at the same concentrations did not change the viability of the Saccharomyces cerevisiae strain used in this process. Sulfite was effective only in the presence of oxygen. Bacteria showed differences in their susceptibilities to sulfite. Facultatively heterofermentative Lactobacillus casei 4-3 was more susceptible than was obligatory heterofermentative Lactobacillus fermentum 7-1. The former showed higher enzyme activities involved in the production and consumption of hydrogen peroxide than did the latter. The viability of L. fermentum 7-1 could be selectively controlled by hydrogen peroxide at concentrations of 1 to 10 mM. Based on these findings, it is hypothesized that the sulfur trioxide radical anions formed by peroxidase in the presence of hydrogen peroxide are responsible for the control of contaminating bacteria. Sulfite did not kill the yeast strain, which has catalase to degrade hydrogen peroxide. A cell-recycled continuous ethanol fermentation process was run successfully with sulfite treatments.  相似文献   

11.
Sulfur oxygenase, sulfite oxidase, adenylyl sulfate reductase, rhodanase, sulfur:Fe(III) oxidoreductase, and sulfite:Fe(III) oxidoreductase were found in cells of aerobic thermoacidophilic bacteria Sulfobacillus sibiricus strains N1 and SSO. Enzyme activity was revealed in cells grown on the medium with elemental sulfur or in the presence of various sulfide elements and concentrates of sulfide ores. The activity of sulfur-metabolizing enzymes depended little on the degree of aeration during bacterial growth.  相似文献   

12.
Sulfite oxidase (sulfite:oxygen oxidoreductase, EC 1.8.3.1) was purified 482-fold from liver of the Pacific hake Merluccius productus. The molecular weight of the enzyme was found to be 120 000 by gel exclusion chromatography on Sephadex G-100. Electrophoretic analysis on sodium dodecyl sulfate (SDS)-polyacrylamide gel revealed that the enzyme was composed of two subunits whose molecular weight was estimated to be 60 000. The pH optimum of the enzyme was 8.7; Ks for sulfite, 2.5 x 10(-5) M; and that for cytochrome c, 3.6 x 10(-7) M. The enzyme elicited an EPR signal at g = 1.97 characteristic of pentavalent molybdenum. Colorimetric analysis also disclosed that the enzyme contained 2 mol each of heme and molybdenum per mol of protein. This fish liver homogenate in isotonic sucrose solution was fractionated by differential centrifugation into nuclei, mitochondria, microsomes and supernatant (100 000 X g). The major portion of sulfite oxidase activity was found in mitochondria. The sulfite oxidase activity was markedly high in liver and kidney, as compared with that in heart, spleen, muscle, gill and eye.  相似文献   

13.
The mechanism of glucose and sucrose transport and the influence of various concentrations of sulfite on its activity was studied in mesophyll protoplasts (etioprotoplasts, semi-etioprotoplasts and green protoplasts) isolated from oat (Avena sativa L.) seedlings. Kinetic analysis of [14C] glucose loading (in darkness) revealed in each kind of protoplasts the presence of two transport components. At low exogenous glucose concentrations a saturable system was the main mode of transport. At concentrations higher than 20 mM the loading of glucose in all types of protoplasts was dominated by a non-saturable, linear diffusion-like component. The rate of glucose uptake was greatest in etioprotoplasts and lowest in green protoplasts. In contrast to the above we have not found saturable components of sucrose transport in any kind of protoplasts. The rate of its uptake was greatest in semi-etioprotoplasts. Sulfite, at a concentration of < 1.0 mM stimulated and at ≥ 1.0 mM inhibited the uptake of glucose to etioprotoplasts and semi-etioprotoplasts and inhibited that to green protoplasts at any concentration. The transport of sucrose underwent a significant inhibition in the various types of protoplasts only under the influence of 10.0 mM of sulfite ions. Inhibition of glucose uptake by sulfite was of the non-competitive type. Sulfite also affected the level of adenylic nucleotides and lowered the energy charge and ATP/ADP ratio. Intensity of sulfite uptake was significantly higher in green protoplasts than in etioprotoplasts.  相似文献   

14.
Sulfur oxygenase, sulfite oxidase, adenylyl sulfate reductase, rhodanase, sulfur : Fe(III) oxidoreductase, and sulfite : Fe(III) oxidoreductase were found in cells of aerobic thermoacidophilic bacteria Sulfobacillus sibiricus, strains N1 and SSO. Enzyme activity was revealed in the cells grown on medium with elemental sulfur or in the presence of various sulfide minerals and concentrates of sulfide ores. The activity of enzymes of sulfur metabolism depended little on the degree of aeration during bacterial growth.  相似文献   

15.
Zeng J  Wang M  Zhang X  Wang Y  Ai C  Liu J  Qiu G 《Biotechnology letters》2008,30(7):1239-1244
Sulfite reductase (SiR) is a large and soluble enzyme which catalyzes the transfer of six electrons from NADPH to sulfite to produce sulfide. The sulfite reductase flavoprotein (SiR-FP) contains both FAD and FMN, and the sulfite reductase hemoprotein (SiR-HP) contains an iron-sulfur cluster coupled to a siroheme. The enzyme is arranged so that the redox cofactors in the FAD-FMN-Fe(4)S(4)-Heme sequence make an electron pathway between NADPH and sulfite. Here we report the cloning, expression, and characterization of the SiR-HP of the sulfite reductase from Acidithiobacillus ferrooxidans. The purified SiR-HP contained a [Fe(4)S(4)] cluster. Site-directed mutagenesis results revealed that Cys427, Cys433, Cys472 and Cys476 were in ligating with the [Fe(4)S(4)] cluster of the protein.  相似文献   

16.
Sulfite (SO(3)(2-)) has been widely used as preservative and antimicrobial in preventing browning of foods and beverages. SO(2), a common air pollutant, also is capable of producing sulfite and bisulfite depending on the pH of solutions. A molybdenum-dependent mitochondrial enzyme, sulfite oxidase, oxidizes sulfite to inorganic sulfate and prevents its toxic effects. In the present study, sulfite toxicity towards isolated rat hepatocytes was markedly increased by partial inhibition of cytochrome a/a(3) by cyanide or by putting rats on a high-tungsten/low-molybdenum diet, which result in inactivation of sulfite oxidase. Sulfite cytotoxicity was accompanied by a rapid disappearance of GSSG followed by a slow depletion of reduced glutathione (GSH). Depleting hepatocyte GSH beforehand increased cytotoxicity of sulfite. On the other hand, dithiothreitol (DTT), a thiol reductant, added even 1h after the addition of sulfite to hepatocytes, prevented cell death and restored hepatocyte GSH levels. Sulfite cytotoxicity was also accompanied by an increase of oxygen uptake, reactive oxygen species (ROS) formation and lipid peroxidation. Cytochrome P450 inhibitors, metyrapone and piperonyl butoxide also prevented sulfite-induced cytotoxicity and lipid peroxidation. Desferroxamine and antioxidants also protected the cells against sulfite toxicity. These findings suggest that cytotoxicity of sulfite is mediated by free radicals as ROS formation increases by sulfite and antioxidants prevent its toxicity. Reaction of sulfite or its free radical metabolite with disulfide bonds of GSSG and GSH results in the compromise of GSH/GSSG antioxidant system leaving the cell susceptible to oxidative stress. Restoring GSH content of the cell or protein-SH groups by DTT can prevent sulfite cytotoxicity.  相似文献   

17.
The kinetics of electron-transfer involved in reactions of reduction of 2,6-dichlorophenol indophenol and Fe(CN)3-(6) by L-ascorbic acid and reduction of ferric cytochrome c by both L-ascorbic acid and reduced hydroxylamine oxidoreductase were studied as a function of three parameters: ionic strength, pressure (1-2000 bar) and temperature (4-20 degrees C) using the high-pressure stopped-flow method. From measurements, the thermodynamic parameters of activation volume (delta V++), and, when possible, activation enthalpy and entropy (delta H++ and delta S++) have been calculated. We found, for these four systems, that the pressure has revealed solvation effects involved in electron-transfer. For the reduction of ferric cytochrome c by reduced hydroxylamine oxidoreductase (a cytochrome-to-cytochrome electron-transfer), we have not obtained evidence for a conformational change.  相似文献   

18.
The enzymatic pathways of elemental sulfur and thiosulfate disproportionation were investigated using cell-free extract of Desulfocapsa sulfoexigens. Sulfite was observed to be an intermediate in the metabolism of both compounds. Two distinct pathways for the oxidation of sulfite have been identified. One pathway involves APS reductase and ATP sulfurylase and can be described as the reversion of the initial steps of the dissimilatory sulfate reduction pathway. The second pathway is the direct oxidation of sulfite to sulfate by sulfite oxidoreductase. This enzyme has not been reported from sulfate reducers before. Thiosulfate reductase, which cleaves thiosulfate into sulfite and sulfide, was only present in cell-free extract from thiosulfate disproportionating cultures. We propose that this enzyme catalyzes the first step in thiosulfate disproportionation. The initial step in sulfur disproportionation was not identified. Dissimilatory sulfite reductase was present in sulfur and thiosulfate disproportionating cultures. The metabolic function of this enzyme in relation to elemental sulfur or thiosulfate disproportionation was not identified. The presence of the uncouplers HQNO and CCCP in growing cultures had negative effects on both thiosulfate and sulfur disproportionation. CCCP totally inhibited sulfur disproportionation and reduced thiosulfate disproportionation by 80% compared to an unamended control. HQNO reduced thiosulfate disproportionation by 80% and sulfur disproportionation by 90%.  相似文献   

19.
As in other materials, sodium sulfite (Na2SO3) inhibited both respiration and photosynthesis in leaf tissues of broad-bean L. cv. Aguadulce). Under our experimental conditions, photosynthesis was more sensitive (significant inhibition at 10 μM) to the pollutant than respiration (significant inhibition only for concentrations higher than 0.1 mM). Sulfite concentrations higher than 0.1 mM also caused the energy charge of leaf tissues to decline sharply. These results suggest that the long, term depolarization of the transmembrane potential difference noticed for concentrations of pollutant higher than 0.1 mM (Maurousset and Bonnemain, Physiol. Plant. 80: 233–237,1990) was mainly due to an indirect inhibition of the plasma membrane H+-ATPase activity following the decrease of the available level of ATP.  相似文献   

20.
Mycobacterium tuberculosis places an enormous burden on the welfare of humanity. Its ability to grow and its pathogenicity are linked to sulfur metabolism, which is considered a fertile area for the development of antibiotics, particularly because many of the sulfur acquisition steps in the bacterium are not found in the host. Sulfite reduction is one such mycobacterium-specific step and is the central focus of this paper. Sulfite reduction in Mycobacterium smegmatis was investigated using a combination of deletion mutagenesis, metabolite screening, complementation, and enzymology. The initial rate parameters for the purified sulfite reductase from M. tuberculosis were determined under strict anaerobic conditions [k(cat) = 1.0 (+/-0.1) electron consumed per second, and K(m(SO(3)(-2))) = 27 (+/-1) microM], and the enzyme exhibits no detectible turnover of nitrite, which need not be the case in the sulfite/nitrite reductase family. Deletion of sulfite reductase (sirA, originally misannotated nirA) reveals that it is essential for growth on sulfate or sulfite as the sole sulfur source and, further, that the nitrite-reducing activities of the cell are incapable of reducing sulfite at a rate sufficient to allow growth. Like their nitrite reductase counterparts, sulfite reductases require a siroheme cofactor for catalysis. Rv2393 (renamed che1) resides in the sulfur reduction operon and is shown for the first time to encode a ferrochelatase, a catalyst that inserts Fe(2+) into siroheme. Deletion of che1 causes cells to grow slowly on metabolites that require sulfite reductase activity. This slow-growth phenotype was ameliorated by optimizing growth conditions for nitrite assimilation, suggesting that nitrogen and sulfur assimilation overlap at the point of ferrochelatase synthesis and delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号