首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 941 毫秒
1.
A new method for quantification of antiradical properties of pure lipid-soluble antioxidants and for measurement of integral antioxidant capacity in the lipid phase (ACL) of polycomponent systems, such as blood plasma or tissue homogenates, is developed. It is based on an antioxidant-sensitive inhibition of a photo-induced, chemiluminescence accompanied autoxidation of luminol. The sensitivity of the photochemiluminescent (PCL) assay lies within nmol quantities of substances, the measuring range for α-tocopherol is between 0.1 and 3 nmol. The interassay variability of the method is lower than 5%, the intraassay variability <2%. The antioxidant efficiency of γ-tocopherol was found to be 43% of α-tocopherol. The results of the PCL measurements on pure antioxidants and on lipid extracts from blood plasma were compared with the level of, ‘vitamin E’ (VE) determined as a sum of α- and γ-tocopherol by HPLC. Very good coincidence of both methods was observed for pure substances (r = 0.998, P<0.001). The ACL of human blood plasma was found to be 27.98 ± 0.68 μmol equivalents of α-tocopherol/l (mean ± mean error, n = 142), it is ∼ 25% more than the concentration of VE found in the same samples (22.09 ± 0.59 μmol/l). In this case, the correlation of both parameters was lower: r = 0.811, P<0.001. The animal experiments showed that synthetic antioxidants may not only increase the value of ACL of blood plasma but in the same time reduce the concentration of biological antioxidants, e.g. VE drastically. The prooxidant activity of synthetic antioxidants in vivo or the replacing of structured α-tocopherol from its position can be the cause. This important circumstance has to be considered during the testing of new antioxidants for clinical application.  相似文献   

2.
The present study demonstrated the combined effect of 24-epibrassinolide and salicylic acid against lead (Pb, 0.25, 0.50, and 0.75 mM) toxicity in Brassica juncea seedlings. Various parameters including water status, metal uptake, total water- and lipid-soluble antioxidants, metal chelator content (total thiols, protein-bound thiols, and non-protein-bound thiols), phenolic compounds (flavonoids, anthocyanins, and polyphenols), and organic acids were studied in 10-day-old seedlings. Dry matter content and the heavy metal tolerance index were reduced by 42.24 and 52.3%, respectively, in response to Pb treatment. Metal uptake, metal-chelating compounds, phenolic compounds, and organic acids were increased in Pb-treated seedlings as compared to control plants. The treatment of Pb-stressed seedlings with combination of EBL and SA resulted in enhancement of heavy metal tolerance index by 40.07%, water content by 1.84%, and relative water content by 23.45%. The total water- and lipid-soluble antioxidants were enhanced by 21.01 and 2.21%, respectively. In contrast, a significant decline in dry weight, metal uptake, thiol, and polyphenol contents was observed following the application of 24-epibrassinolide and salicylic acid. These observations indicate that Pb treatment has an adverse effect on B. juncea seedlings. However, co-application of 24-epibrassinolide and salicylic acid mitigates the negative effects of Pb, by lowering Pb metal uptake and enhancing the heavy metal tolerance index, water content, relative water content, antioxidative capacities, phenolic content, and organic acid levels.  相似文献   

3.
The aim of this study was to identify, in the lichen Ramalina lacera, antioxidants that could provide indications of air pollution stress, and respond earlier than traditionally used structural/physiological parameters. The pollution-sensitive lichen R. lacera was transplanted from its relatively unpolluted natural habitat to two air-polluted sites for a period of up to 6 months. The superoxide dismutase and catalase activities, total water- and lipid-soluble low-molecular-weight antioxidant capacities and chlorophyll b/chlorophyll a ratios were assessed every 6 weeks. The earliest signs of oxidative stress were detected in the activities of fungal copper/zinc-superoxide dismutase, algal iron-superoxide dismutase and water-soluble low-molecular-weight antioxidants, which increased significantly as early as 42 days after exposure to pollution. Catalase activity increased in lichens transplanted to the polluted sites after 90 days. All activities decreased towards the end of the experiment. The impact of air pollution on R. lacera, using the traditionally employed parameter of chlorophyll b/chlorophyll a ratio, was only detected after 6 months of exposure to air pollution. Our results indicate that antioxidant parameters may serve as improved early-warning indicators of air pollution stress in lichens.  相似文献   

4.
The antioxidant capacity of human plasma was determined by following the oxidation kinetics of the lipid-soluble fluorescent marker BODIPY using 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (MeO-AMVN) as the lipophilic radical initiator. The results are expressed as a total antioxidant performance (TAP) value based on the inhibition of BODIPY oxidation, as determined by the appearance of green fluorescence, with respect to a control sample (phosphatidylcholine with or without delipidized human serum). The suitability of the assay was evaluated on the basis of its precision, reproducibility, and specificity. The intra- and interassay coefficients of variation both were less than 5%. The addition of a representative substrate of plasma peroxidation, phosphatidylcholine, up to 750mug/ml did not induce significant changes in the TAP value. Also, BODIPY photooxidation was not observed during the experimental time course (220min). The TAP values of 6 plasma samples from healthy donors were measured and correlated with the main plasma water- and lipid-soluble antioxidants (uric acid and ascorbic acid, alpha-tocopherol, and carotenoids) and lipid profiles. Significant correlations were found between TAP and uric acid (R=0.97, P<0.05) and cholesterol-adjusted alpha-tocopherol (R=0.93, P<0.01). The results confirm that the TAP assay is suitable to measure the antioxidant activity of plasma antioxidants localized in both the lipophilic and hydrophilic compartments.  相似文献   

5.
A method was worked out that helped us to isolate superoxide dismutase (SOD) from human blood plasma. The change of enzyme's activity was shown depending on the period of SOD storage. Changes in activity were observed in storing protein after gel filtration. The activity of purified enzyme was half as much after 24 h storage and remained constant for a long period of time (5 mo). The change of SOD activity was found to be connected with a modification of its structure. The storage of enzyme's solution during 3 1/2 mo is accompanied by the lowering of protein molecular mass from 53,000 Da to 34,000 Da. The inhibitors of proteinases--phenyl-methylsulfonyl fluoride (PMSF) and alpha 2-macroglobulin--showed no protective effects on purified SOD. That's why it was possible to say that the lowering of protein molecular mass didn't connect with a specific proteolysis. An oxidative modification of SOD structure is under discussion now. The modification is most probably caused by oxidative destruction of aminoacid residues that are located outside the protein active centre.  相似文献   

6.
Acute ultraviolet-B (UV-B) irradiation is known to act as an initiator in the formation of reactive oxygen species. These oxygen products are highly reactive and they are able to cause irreversible damage to cellular components. Oxygen free radicals are normally neutralized by very efficient systems in the body. These include antioxidant enzymes like superoxide dismutase (SOD). In a healthy subject, there is a balance between free radicals and the levels of antioxidants. In some pathological conditions such as oxidative stress, the level of antioxidants is significantly reduced. The skin contains relatively high levels of zinc (Zn), an essential element known to be a cofactor in some metabolic pathways. Zinc has also been reported to have antioxidant properties. In the present study, we investigated the effect of ginkgo biloba extract (Gbe), a potent free-radical scavenger, on UV-B-irradiated skin by measuring SOD activity and Zn levels in the skin, before and after treatment. The SOD activity was decreased after UV-B exposure, in comparison with the control group (p<0.05). After Gbe treatment, the SOD activity increased (p<0.05) as compared with the untreated UV-B irradiated group. The Zn levels changed in the same pattern as the SOD activity values.  相似文献   

7.
Increased oxidative stress and impaired antioxidant defense mechanisms are believed to be the important factors contributing to the pathogenesis and progression of diabetes mellitus. In this study, we have reported the effects of the streptozotocin-induced diabetes on the gene expression and the activities of two antioxidant enzymes, manganese superoxide dismutase (MnSOD) and glutathione peroxidase (GPx). We also studied the effects of two antioxidants, vitamin C and DL-α-lipoic acid (LA), on the system. Our results showed no significant change in both enzymes activities in diabetic animals compared to controls. Similarly, mRNA and protein profiles of MnSOD showed no change. Though the mRNA expression of GPx did not show any change, Western-blot analysis results demonstrated that protein expression is increased. LA, which is a water- and lipid-soluble antioxidant, decreased the protein expression of MnSOD, though mRNA levels and activities remained unchanged. LA treatment increased the GPx activities in diabetic tissues, significantly, and RT-PCR and Western-blot analysis results demonstrated that this increase in activity is not regulated at the gene level, as both mRNA and protein levels did not change. Supplementing the animals with vitamin C, a powerful water-soluble antioxidant, increased the mRNA expression of MnSOD, though the protein expression and the activity did not change statistically. On the other hand GPx activity increased significantly through post-translational modifications, as both mRNA and protein expressions did not change. These results together with our previous findings about the gene expressions of catalase and Cu–Zn SOD indicate the presence of very intricate control mechanisms regulating the activities of antioxidant enzymes in order to prevent the damaging effects of oxidative stress.  相似文献   

8.
Much evidence exists for the increased peroxidase activity of copper, zinc superoxide dismutase (SOD1) in oxidant-induced diseases. In this study, we measured the peroxidase activity of SOD1 by monitoring the oxidation of dichlorodihydrofluorescein (DCFH) to dichlorofluorescein (DCF). Bicarbonate dramatically enhanced DCFH oxidation to DCF in a SOD1/H(2)O(2)/DCFH system. Peroxidase activity could be measured at a lower H(2)O(2) concentration ( approximately 1 microm). We propose that DCFH oxidation to DCF is a sensitive index for measuring the peroxidase activity of SOD1 and familial amyotrophic lateral sclerosis SOD1 mutants and that the carbonate radical anion (CO(3)) is responsible for oxidation of DCFH to DCF in the SOD1/H(2)O(2)/bicarbonate system. Bicarbonate enhanced H(2)O(2)-dependent oxidation of DCFH to DCF by spinal cord extracts of transgenic mice expressing SOD1(G93A). The SOD1/H(2)O(2)/HCO(3)(-)-dependent oxidation was mimicked by photolysis of an inorganic cobalt carbonato complex that generates CO(3). Metalloporphyrin antioxidants that are usually considered as SOD1 mimetic or peroxynitrite dismutase effectively scavenged the CO(3) radical. Implications of this reaction as a plausible protective mechanism in inflammatory cellular damage induced by peroxynitrite are discussed.  相似文献   

9.
超氧化物歧化酶(superoxide dismutase,SOD)是生物体内存在的一种抗氧化金属酶,它能够催化超氧阴离子自由基歧化生成氧(O2)和过氧化氢(H2O2),在机体氧化与抗氧化平衡中起到至关重要的作用,且与很多疾病的发生、发展密不可分。对SOD的活性调节一直是研究热点,大多数研究都集中在转录水平(基因表达)和翻译水平(酶蛋白合成)两个方面。随着研究的深入,发现蛋白质翻译后修饰(PTM)对SOD的酶活性有重要影响。近年来,研究蛋白质翻译后修饰对SOD的酶活性的影响越来越受到重视。总结了硝基化、磷酸化、S-谷胱甘肽化、糖基化、乙酰化、次磺酸化、亚磺酸化、SUMO化等几种SOD翻译后的修饰方式,讨论了修饰后对SOD酶活性的影响和生理意义,并对SOD翻译后修饰的发展及面临的挑战进行了展望,为相关疾病的研究、治疗及靶向药物的研制提供了理论基础。  相似文献   

10.
Much data has accumulated supporting a proatherogenic role for oxidized low density lipoprotein (Ox-LDL). Micronutrient antioxidants such as alpha-tocopherol, the principal lipid-soluble antioxidant, assume potential significance because levels can be manipulated by dietary measures without resulting in side effects. Co-incubation of LDL in vitro with alpha-tocopherol inhibits its oxidative modification. Hence the effect of dietary supplementation with alpha-tocopherol on the time course of copper-catalyzed oxidation of LDL was tested in a randomized placebo-controlled single-blind study. Two groups of 12 male subjects were given either placebo or alpha-tocopherol (800 IU/day) for a period of 12 weeks. Alpha-tocopherol therapy did not result in any side effects or exert an adverse effect on the plasma lipid and lipoprotein profile. While the lipid standardized alpha-tocopherol levels were similar at baseline, the supplemented group had 3.3-fold and 4.4-fold higher levels compared to placebo at 6 and 12 weeks, respectively. In the 15 subjects in whom both plasma and LDL alpha-tocopherol levels were quantitated, there was a significant correlation (r = 0.79, P less than 0.0001). At baseline there were no significant differences in the time course curves of thiobarbituric acid-reacting substances (TBARS) activity or conjugated diene formation between the alpha-tocopherol and placebo groups. However, at both 6 and 12 weeks the mean levels of TBARS activity and conjugated diene formation were lower in the alpha-tocopherol group; the most significant differences were manifest at the 3-h time point. Also at both 6 and 12 weeks the mean rate of oxidation was lower in the alpha-tocopherol group.2+_  相似文献   

11.
The effect of phenolic antioxidants on the rat liver microsomal glutathione S-transferase (MGST1) was investigated in vitro. When microsomes were incubated with various polyphenolic antioxidants, gallic acid (3,4,5-trihydroxybenzoic acid) markedly increased MGST1 activity and the increase was prevented in the presence of superoxide dismutase (SOD) or catalase. The MGST1 activity increased by gallic acid was decreased by further incubation with sodium arsenite, a sulfenic acid reducing agent, but was not with dithiothreitol, a disulfide bond reducing agent. The incubation of microsomes with gallic acid in the presence of the NADPH generating system which generates reactive oxygen species (ROS) through cytochrome P-450 system increased the MGST1activity in spite of scavenging the ROS and the increase was also depressed by SOD/catalase. The increase of MGST1 activity by gallic acid was prevented by co-incubation with a stable radical, 1,1-diphenyl-2-picrylhydrazyl or ferric chloride. These results suggest that the gallic acid acts as a pro-oxidant and activates MGST1 through oxidative modification of the enzyme.  相似文献   

12.
Oxidative stress has been suggested as one of the physiopathologic conditions underlying the association of total plasma homocysteine (p-tHcy) with cardiovascular disease (CVD), but this hypothesis has not been validated in human epidemiological studies. We measured plasma and erythrocyte antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD), along with serum lipid-soluble antioxidants alpha-tocopherol, beta-carotene, lycopene and retinol, in a sample of 123 healthy elderly subjects (54 men, 69 women). Plasma malondialdehyde (p-MDA) was determined as a marker of lipid peroxidation, and p-tHcy was quantified by HPLC. No significant differences were found for p-MDA, GPx or SOD activities or serum antioxidant concentrations, in subjects with elevated p-tHcy (≥15 μmol/l) as compared to those with lower plasma homocysteine. Hyperhomocysteinemia did not lead to increased risk of having the highest p-MDA values, in either sex. We found no evidence that p-tHcy was associated with lipid peroxidation in this elderly human sample. Our results do not support the view that hyperhomocysteinemia would induce an adaptive response of antioxidant systems, either. More epidemiologic and clinical research is needed to clarify whether homocysteine promotes atherosclerosis by means of an oxidative stress mechanism.  相似文献   

13.
The Total (Peroxyl) Radical-trapping Antioxidant Parameter (TRAP) of six freshly prepared human plasma samples and 45 frozen plasma samples has been determined. It is shown that contributions from urate (35-65%), plasma proteins (10-50%), ascorbate (0-24%) and vitamin E (5-10%) to TRAP account for all of the peroxyl radical-trapping antioxidant activity in the majority of the samples. The changes in concentrations of the plasma antioxidants during peroxyl radical attack show that the first line of defense is provided by the plasma sulfhydryl groups, even urate being spared during the initial stages of the reaction. The modes of action of all of these plasma antioxidants and possible interactions between them are discussed, with particular emphasis on the abilities of the water-soluble antioxidants to regenerate or spare the only lipid-soluble antioxidant, vitamin E.  相似文献   

14.
黄精凝集素Ⅱ分子稳定性与生物学活性研究鲍锦库,曾仲奎,周红(四川大学生物系,成都,610064)本文在黄精凝集素Ⅱ纯化及性质研究的基础上,应用多种变性条件,研究其分子特性,同时对分子的巯基和色氨酸进行修饰,研究该凝集素分子保持其生物学活性与这些基团的...  相似文献   

15.
Oxidative stress has been implicated as an important etiologic factor in atherosclerosis and vascular dysfunction. Antioxidants may inhibit atherogenesis and improve vascular function by two different mechanisms. First, lipid-soluble antioxidants present in low-density lipoprotein (LDL), including alpha-tocopherol, and water-soluble antioxidants present in the extracellular fluid of the arterial wall, including ascorbic acid (vitamin C), inhibit LDL oxidation through an LDL-specific antioxidant action. Second, antioxidants present in the cells of the vascular wall decrease cellular production and release of reactive oxygen species (ROS), inhibit endothelial activation (i.e., expression of adhesion molecules and monocyte chemoattractants), and improve the biologic activity of endothelium-derived nitric oxide (EDNO) through a cell- or tissue-specific antioxidant action. alpha-Tocopherol and a number of thiol antioxidants have been shown to decrease adhesion molecule expression and monocyte-endothelial interactions. Vitamin C has been demonstrated to potentiate EDNO activity and normalize vascular function in patients with coronary artery disease and associated risk factors, including hypercholesterolemia, hyperhomocysteinemia, hypertension, diabetes, and smoking.  相似文献   

16.
用各种化学试剂修饰红花菜豆(Phaseoluscoccineusvarrubronanus,Berry)凝集素(简称PCL)分子,测定与其活性相关的氨基酸残基.经NBS修饰表明PCL具有8个Trp残基,其中4个暴露于分子表面,此4个Trp残基被修饰后,PCL的凝血活性完全丧失.比较PCL修饰前后的CD光谱表明修饰不改变其二级结构。修饰Tyr,Arg,His残基和游离氨基及羧基不影响PCL的血凝活性.巯基也不是血凝活性所必需,但是PCL分子中的二硫键被还原,或被CNBr分解为两个片断则使蛋白质丧失血凝活性,提示分子的完整结构对PCL的血凝活力是重要的  相似文献   

17.
用ESR自旋捕集技术研究正常人和病人血清中的SOD活力   总被引:1,自引:1,他引:0  
本文探讨了用ESR自旋捕集技术测定SOD活力的有关实验条件,并研究了正常人,疾病和恶性肿瘤病人血清中SOD活力的变化,发现恶性肿瘤病人血清SOD活力明显升高,某些疾病患者亦有升高,各组间有显著统计学差异.与化学发光法测定结果比较表明,ESR法测定SOD活力的特异性优于化学发光法.  相似文献   

18.
Quercetin has been extensively studied in various short-term assays for genotoxicity. The patterns of genotoxicity of quercetin for different genetic endpoints are subject to a variety of factors (pH, antioxidants, metabolism) whose precise role in each test remains unclear. In the present study we report on the possible effect of oxygen-derived species on the activity of quercetin in the Ames assay and in the SOS chromotest. Our results seem to suggest that superoxide dismutase (SOD) does not account for the levels of mutagenicity detected in the presence of S9 or S100. The latter may, however, contain other factors of antioxidant defense which may prevent the oxidative degradation of quercetin. Since this degradation occurs at pH values above neutrality and the SOS-inducing activity is higher at pH 6.0, it is concluded that the response of quercetin in the SOS chromotest is due to quercetin itself at acidic pH. The SOS-inducing activity at pH 7.4 is enhanced by SOD, but it cannot be unambiguously concluded that this effect in the SOS chromotest might only be due to protection against the oxidative degradation of quercetin.  相似文献   

19.
Two apricot genotypes, 'Gonci magyarkajszi' and 'Preventa' were assayed at three ripening stages for flesh color indices (L*, a*, b*, C* and Ho), contents of total phenolics and vitamin C, and both water- and lipid-soluble antioxidant capacities (ferric reducing antioxidant power; 2,2'-diphenyl-1-picrylhydrazyl scavenging activity; total radical scavenging activity; and Photochem lipid-soluble antioxidant capacity) to compare their dynamics in the accumulation of antioxidant compounds and capacities through ripening. The increase in a*, b* and C* and decrease in Ho during ripening represented a color shift from green to yellow and orange due to carotenoid accumulation. Parallel to carotenoid accumulation, contents of total phenolics and vitamin C and antioxidant capacity increased significantly (p < 0.05) from unripe to fully ripe fruits. More phenolics and vitamin C accumulated in fully ripe fruits of 'Preventa' than 'G?nci magyarkajszi'. The accumulation patterns of these compounds were different: while the vitamin C contents in unripe fruit of 'Preventa' and 'G?nci magyarkajszi' were identical (approx. 6 mg/100 g fresh weight), unripe 'Preventa' contained even more phenolics (approx. 12 mmolGA/l) than fully ripe 'G?nci magyarkajszi' (8 mmolGA/l). Our results confirm that fully ripe 'Preventa' fruits are characterized by outstanding functional properties due to the increased accumulation of vitamin C and phenolics throughout the ripening process.  相似文献   

20.
Cu/Zn superoxide dismutase (SOD) mutations are involved in about 20% of all cases of familial amyotrophic lateral sclerosis (FALS). Recently, it has been proposed that aberrant copper activity may be occurring within SOD at an alternative binding, and cysteine 111 has been identified as a potential copper ligand. Using a commercial source of human SOD isolated from erythrocytes, an anomalous absorbance at 325 nm was identified. This unusual property, which does not compromise SOD activity, had previously been shown to be consistent with a sulfhydryl modification at a cysteine residue. Here, we utilized limited trypsin proteolysis and mass spectrometry to show that the modification has a mass of 32 daltons and is located at cysteine 111. The reaction of SOD with sodium sulfide, which can react with cysteine to form a persulfide group, and with potassium cyanide, which can selectively remove persulfide bonds, confirmed the addition of a persulfide group at cysteine 111. Gel electrophoresis and glutaraldehyde cross-linking revealed that this modification makes the acid-induced denaturation of SOD fully irreversible. Furthermore, the modified protein exhibits a slower acid-induced unfolding, and is more resistant to oxidation-induced aggregation caused by copper and hydrogen peroxide. Thus, these results suggest that cysteine 111 can have a biochemical and biophysical impact on SOD, and suggest that it can interact with copper, potentially mediating the copper-induced oxidative damage of SOD. It will be of interest to study the role of cysteine 111 in the oxidative damage and aggregation of toxic SOD mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号