首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zong X  Ran S  Kim KS  Fang D  Hsiao BS  Chu B 《Biomacromolecules》2003,4(2):416-423
Electrospun poly(glycolide-co-lactide) (PLA10GA90, LA/GA ratio 10/90) biodegradable nanofiber membranes possessed very high surface area to volume ratios and were completely noncrystalline with a relatively lowered glass transition temperature. These characteristics led to very different structure, morphology, and property changes during in vitro degradation, which were examined systematically. A shrinkage study showed that the electrospun crystallizable but amorphous PLA10GA90 membranes exhibited a very small shrinkage percentage when compared with the electrospun membranes of noncrystallizable poly(lactide-co-glycolide) (PLA75GA25, LA/GA 75/25) and poly(d,l-lactide). Although the weight loss of electrospun PLA10GA90 membranes exhibited a similar degradation behavior as cast thin films, detailed studies showed that the structure and morphology changes in electrospun membranes followed different pathways during the hydrolytic degradation. After 1 day of degradation in buffer solution at 37 degrees C, electrospun PLA10GA90 membranes exhibited a sudden increase in crystallinity and glass transition temperature, due to the fast thermally induced crystallization process. The continuous increase in crystallinity and apparent crystal size, as well as the decrease in long period and lamellae thickness, indicated that the thermally induced crystallization was followed by a chain cleavage induced crystallization process. The mass loss rate was accelerated after 6 days of degradation. The increase in glass transition temperature during this period further confirmed that the degradation of PLA10GA90 nanofibers was initiated from the amorphous region within the lamellar superstructures. A mechanism of structure and morphology changes during in vitro degradation of electrospun PLA10GA90 nanofibers is proposed.  相似文献   

2.
Tanaka M  Young RJ 《Biomacromolecules》2006,7(9):2575-2582
Molecular orientation distributions in the crystalline and amorphous regions of a biaxially oriented poly(L-lactic acid) film were analyzed fully by polarized Raman spectroscopy. Raman bands at 926 and 875 cm(-1) were chosen for the determination of the most probable molecular orientation distribution functions for the crystalline and amorphous regions in the film. It was revealed that the PLLA molecules were oriented biaxially in both the crystalline and amorphous regions. The orientation distribution normal to the film surface was found to be broader in the amorphous regions than in the crystalline regions. Furthermore, a predominant unidirectional molecular orientation was observed in the crystalline regions, whereas the molecular orientation distribution in the amorphous regions was isotropic in the plane parallel to the film surface. The different behavior of the crystalline and amorphous regions suggests that each region underwent different deformation mechanisms during the film formation.  相似文献   

3.
Poly(epsilon-caprolactone) polyurethane and its shape-memory property   总被引:5,自引:0,他引:5  
Ping P  Wang W  Chen X  Jing X 《Biomacromolecules》2005,6(2):587-592
A series of segmented poly(epsilon-caprolactone) polyurethanes (PCLUs) were prepared from poly(epsilon-caprolactone) (PCL) diol, 2,4-toluene diisocyanate and ethylene glycol. The molecular weight (M(n)) of PCL was 500-10,000, and the soft-to-hard molar ratio was 1:2 to 1:6. Their shape-memory behaviors were investigated as a function of PCL molecular weight, PCLU composition, and thermal/mechanical history. When a deformation temperature 15-20 degrees C below T(m) was chosen, the lowest recovery temperature (LRT) was 15-18 degrees C below T(m), and the recovery ratio was 94-100% for tensile deformation of 300% and for compression of 2.7-fold. The reasons for this deformation-recovery procedure and the mechanism for this shape recovery below T(m) were discussed. The shape recovery was associated with the premelting of the crystals formed during the deformation and fixation, and, thus, it could be accomplished in the solid state. Its driving force was the inner stress stored in the deformed specimen during deformation and crystallization. Therefore, the LRT was a more practical temperature for shape-memory PCLU than T(m). It could be conveniently measured by means of thermal mechanical analysis. By adjusting the molecular weight of the PCL diol and the hard-to-soft ratio, the LRT of PCLU could be adjusted to the range of 37-42 degrees C, and reasonable rigidity could be retained after shape recovery, fulfilling the essential requirements of medical implantations.  相似文献   

4.
S Kubota  G D Fasman 《Biopolymers》1975,14(3):605-631
Water-soluble polypeptides of L -valyl and L -isoleucyl residues flanked with DL -lysyl blocks [poly(DL Lys · HCl)x–poly(L Val)y–poly(DL Lys · HCl)x, poly(DL Lys · HCl)x–poly-(L Ile)y–poly(DL Lys · HCl)x] and homopoly(L -threonine) were prepared. The β conformation of these polymers in water, as well as in aqueous methanol, was confirmed by infrared spectroscopy and circular dichroism studies. The optical properties of these valyl and isoleucyl polypeptides were quite different from those of previously reported synthetic homopolypeptides in the β structure. Their differences could be explained by the presence of a “single extended β chain” without either intra- or interchain association.  相似文献   

5.
Shear deformation of young and old human red blood cells was examined over a range of shear stresses and suspending phase viscosities (eta o) using a cone-plate Rheoscope. The internal viscosities (eta i) of these cell types differ, and further changes in internal viscosity were induced by alteration of suspension osmolality and hence cell volume. For low suspending viscosities (0.0555 or 0.111 P) old cells tended to tumble in shear flow, whereas young cells achieved stable orientation and deformed. Changes in osmolality, at these external viscosities, altered the percentage of cells deforming, and for each cell type threshold osmolalities (Osm-50) were determined where 50% of cells deformed. The threshold osmolalities were higher for younger cells than for older cells, but the internal viscosities of the two cell types were similar at their respective Osm-50. Threshold osmolalities were also higher for the higher external viscosity, but the ratio of internal to external viscosities (i.e., eta i/eta o) was nearly constant for both external viscosities. Deformation of stably oriented cells increased with increasing shear stress and approached a value limited by cell surface area and volume. For isotonic media, over a wide range of external viscosities and shear stresses, deformation was greater for younger cells than for older cells. However, deformation vs. shear stress data for the two cell types became nearly coincident if young cells were osmotically shrunk to have their internal viscosity close to that for old cells. Increases in external viscosity, at constant shear stress, caused greater deformation for all cells. This effect of external viscosity was not equal for young and old cells; the ratio of old/young cell deformation increased with increasing eta o. However, if deformation was plotted as a function of the ratio lambda = eta i/eta o, at constant shear stress, young and old cell data followed similar paths. Thus the ratio lambda is a major determinant of cell deformation as well as a critical factor affecting stable orientation in shear flow.  相似文献   

6.
In this study, peptide-loaded microparticles were prepared using an aerosol solvent extraction system (ASES) by employing supercritical carbon dioxide as an antisolvent. The effects of the molecular weight of poly(Llactide) (PLLA), poly(ethylene glycol) (PEG), the block length of methoxy poly(ethylene glycol)-b-poly(L-lactide) (mPEG-PLLA), the blending of PLLA and PEG, and the drug-to-polymer feed ratio on the formation of leuprolide acetate (LA)-loaded microparticles and their release characteristics were investigated. Scanning electron microscope observations showed that the LA-loaded polymer particles had a spherical morphology with a smooth surface. The entrapment efficiency of LA in the ASES-processed microparticles was found to be extremely high (about 99%), whereas the initial release rate of the LA-loaded microparticles was very low for PLLA. The release rate of LA was observed to increase as the PEG block length of mPEG-PLLA and/or the drug content in the microparticles increased. When PLLA was blended with PEG, the release rate of LA from the PLLA/PEG microparticles was significantly faster compared with the corresponding mPEG-PLLA copolymer.  相似文献   

7.
Texture properties of high and low acyl mixed gellan gels   总被引:1,自引:0,他引:1  
The strength, deformability, and firmness of high acyl (H) and low acyl (L) mixed gellan gels were studied by compression tests. The gels were prepared with total polymer concentrations of 0.5, 1.0, and 1.5% at H/L weight ratios of 25/75, 50/50, 75/25, and calcium concentrations 2–80 mM. The mixed gels were much more deformable, with failure normal strains ranging from 0.6 to 1.5, but had similar strength compared to low acyl gellan gels. Both H/L ratio and total polymer concentration affected the textural properties, but H/L ratio was a more important factor. Maximum synergistic interaction was observed at H/L=50/50. The mixed gels exhibited excellent texture properties compared to other common food gels.  相似文献   

8.
This study was planned to determine the effects of lycopene treatment on serum protein fractions in experimental diabetic rats. In order to induce diabetes in rats in the diabetes (D) and diabetes + lycopene (DL) groups, rats were given 45 mg/kg single-dose streptozotocin intraperitoneally. Lycopene (10 mg/kg/day dissolved in sunflower oil) was administered to the rats in the lycopene-only (L) and DL groups. Blood glucose levels and HbA1c% in DL group and diabetes group increased (p < 0.05) compared to control and L group. Total protein, albumin, α1, α2, and β globulin fractions of diabetic and DL groups were lower than control and L groups (p < 0.05). D group had lowest gamma (γ) globulin levels among other groups (p < 0.05). The γ globulin levels was slightly increased than diabetic groups (D and DL), but it was still lower than control and L groups (p < 0.05). The highest value of A/G ratio was observed in diabetic group. Similarly, the % level of A/G ratio of D group was higher than other groups. It was noted that the A/G ratio decreased and reached to control group levels after lycopene treatment.  相似文献   

9.
Because of the problems associated with the conventional osteofixation devices used in craniomaxillofacial surgery, absorbable devices present an appealing alternative. Devices made of the polymers polylactide, polyglycolide, and their copolymers (PLGA and P[L/DL]LA) are currently the most commonly used. Ultrahigh-strength implants can be manufactured from these polymers with the self-reinforcing technique. Over the authors' almost two decades of study, both in experimental and clinical settings, self-reinforced devices have proved to be biocompatible, easy to handle, and mechanically strong, even for the fixation of femoral neck fractures. In craniomaxillofacial surgery, the authors have used self-reinforced devices for over 8 years without complications. Because of the more favored degradation characteristics, currently the copolymeric self-reinforced devices (P[L/DL]LA, Biosorb FX and PLGA, Biosorb PDX; Elite Performance Technologies, Solana Beach, Calif.) represent the advancing front in the application of absorbable devices in craniomaxillofacial surgery. The authors' share their experience and their studies of self-reinforced devices, which possess the highest strength and ductility of all bioabsorbable products.  相似文献   

10.
Textural properties of 1% low and high acyl gellan gels and their mixtures were studied using compression tests and the microcentrifuge-microfiltration based water holding capacity (WHC) method. Low acyl (1% LA), high acyl (1% HA) gels and mixtures of 1% 25/75 LA/HA, 50/50 LA/HA, 75/25 LA/HA gels with calcium concentrations ranging from 2 to 80 mM were studied. HA or mixed gels with a lower LA/HA ratio had a greater WHC and failure strain than that of LA or mixed gels with a higher LA/HA ratio. Gellan gels with a higher LA/HA ratio had a larger initial Young's modulus. Our study also indicates that a higher LA/HA ratio does not necessarily result in a gel with a larger failure stress, although LA gels are generally firmer than HA gels. Gel strength and WHC of HA and LA/HA mixtures may reflect both stabilization and destabilization effects of glycerate groups positioned at one of the glucose residues in each repeating tetrasaccharide unit of HA gels.  相似文献   

11.
Polymerizations of L - and DL -phenylalanine N-carboxyanhydride in nitrobenzene by poly (N-methyl-L -alanine) of varying degrees of polymerization (n = 1–30) were investigated. Poly(N-methyl-L -alanine) was prepared by the polymerization of N-methyl-L -alanine NCA with N-methyl-L -alanine diethylamide and the degree of polymerization was controlled by the molar ratio [NCA]/[Catalyst] + 1. This polymer was shown to be an asymmetrically selective catalyst which polymerized L -phenylalanine NCA at a faster rate than DL -phenylalanine NCA. With increasing degree of polymerization the stability of the secondary structure of poly(N-methyl-L -alanine) increased. This was confirmed by circular dichroism spectra. However, the degree of asymmetric selection did not increase as the stability of the secondary structure of poly(N-methyl-L -alanine) increased. These findings indicate that the interaction of a growing polypeptide in an ordered structure with NCA molecules prior to the reaction does not lead to an asymmetric selection, and that the mechanism of the asymmetric selection by poly(N-methyl-L -alanine) should be different from those proposed so far.  相似文献   

12.
The Raman and infrared spectra of poly(L -lysine) and poly(DL -lysine) in solution are reported and the effects of various salts are investigated. The results demonstrate that α-helix formation in solution is induced by specific salts and the spectral data support the hypothesis of regions of local order for poly(L -lysine) in aqueous solutions of low ionic strength.  相似文献   

13.
In the polymerization of phenylalanine N-carboxyanhydride (NCA) using poly(N-methyl-L -or DL -alanine) diethylamide as initiator, the polymerization rate was L -NCA ? D -NCA > DL -NCA. This is a new type of selective polymerization and indicates the incompleteness of earlier investigations to study the asymmetrically selective polymerization without D -NCA. Neither secondary structure nor optical activity of the polymeric initiator is a reason for the selectivity. Hence the cause for the selectivity was sought in the properties of the NCA's in solution. However, the selectivity was not observed in the polymerization initiated by poly(L -phenylalanine) dimethylamide. The importance of the initiator being a secondary amine type was suggested. The experimental results are discussed on the basis of these considerations.  相似文献   

14.
Nineteen levulinic acid (LA)-utilizing bacteria were isolated from environmental samples. Following examination of the use of 80 g/L LA by some isolated strains, Brevibacterium epidermidis LA39–2 consumed 62.6 g/L LA following 8 days incubation. The strain also utilized both 90 and 100 g/L LA, with consumption ratio of 84.3 and 53.3%, respectively, after 10 days incubation.  相似文献   

15.
Uniaxially oriented films with high tensile strength were processed from ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] (P(3HB)) by a method combining hot-drawing near the melting point of the polymer and two-step-drawing at room temperature. In a two-step-drawn and subsequently annealed film, P(3HB) molecular chains fall into two states: 2/1 helix (alpha-form) and planar zigzag (beta-form) conformations. The mechanism for generating the beta-form during two-step-drawing was investigated by time-resolved synchrotron wide- and small-angle X-ray scattering measurements (WAXD and SAXS), together with the measurement of stress-strain curves. It was found that the improvement of mechanical properties is due to not only the orientation of molecular chains but also the generation of the beta-form during the drawing. The crystal and molecular structures of the alpha-form remained unchanged until the yield point of the stress-strain curve. At the yield point, the long period obtained from SAXS doubled and a new reflection indicative of the beta-form was observed on the equatorial line in WAXD. The intensity of the reflection from the beta-form increased with an increase in the two-step-drawing ratio at room temperature. The SAXS pattern changed from a two-point reflection along the meridian to a cross pattern with streaking on the equatorial line, demonstrating the close alignment of shish-kebab structures. The reflection intensity, crystal orientation and crystal size of the alpha-form decreased during two-step-drawing. Based on these results, the beta-form is mainly introduced from the orientation of free molecular chains in the amorphous regions between alpha-form lamellar crystals, but the structural transformation of molecular chains also occurs from the alpha-form to the beta-form at the deformed lamellar crystals.  相似文献   

16.
T Iio 《Biopolymers》1971,10(9):1583-1596
Sequential polypeptides of L -alanine(A) and glycine(G), which were incorporated between two blocks of poly(D ,L -glutamic acid) (DL), were synthesized by applying Merri-field's solid-phase method. On the basis of optical rotatory dispersion criteria, DL(A)38-DL was found to assume the α-helix in the whole range of the water-methanol system; whereas other block sequential polypeptides were found to assume the random-coiled conformation in water and partly the α-helix at the high methanol content. The stability of the α-helix decreased in the order: DL(A)38DL, DL(A2G)10DL, DL(A2G)6DL, and DL(A3G)7DL. This phenomenon may be explained in terms of the dependence of hydrophobic bonding between the C3H group of the ith L -alanine regularly arranged on the surface of the α-helix and the C2H group of the (i + 3)th residue on whether the residue is alanine or glycine. The role which the methanol plays in stabilizing the α-helix is also discussed.  相似文献   

17.
The dragline silk from Nephila clavipes was studied by wide angle X-ray diffraction in its original state, after supercontraction to L/Lo = 0.46, and during re-extension to its original length Lo. The fibers were carefully dried before each exposure. The molecular orientation in the crystalline regions is found to follow the simple predictions of affine deformation, indicating that the crystals act as inert rigid filler particles. The crystals retain considerable orientation after supercontraction, when non-crystalline orientation is weak. This shows that crystallization occurs after orientation as the fiber forms. The oriented amorphous material, treated as a phase of constant volume fraction, also follows affine deformation. These results do not contain any indication of a special structure in the protein fiber.  相似文献   

18.
Pressure-induced change of two bovine proteins, α-lactalbumin (LA) and β-lactoglobulin (LG), was investigated at neutral pH by means of fluorescence and CD spectroscopy. The rate and the extent of modification was considerably increased by applying high pressure during the dansylation reaction of LG, while those for LA were only moderately affected. This difference was accounted for by the structural deformation of these proteins under high pressure. The fluorescence spectrum of these proteins measured under elevated pressure, as well as their fluorescence and CD spectra after the pressure release, indicated different responses towards pressure. The structural change of LA was practically reversible up to 400 MPa, whereas that of LG lost reversibility at 150 MPa or lower. Fluorescent measurement of dansylated (prepared at atmospheric pressure) proteins, especially the energy transfer from the intrinsic Trp residue to the dansyl group, showed that the protein structure was deformed by pressure and that the energy transfer facility of the two proteins was differently affected by high pressure, probably reflecting the degree of compactness of their pressure-perturbed structures  相似文献   

19.
This study presents the first application of (2)H NMR spectroscopy to quantify lignocellulose matrix orientation, and it demonstrates the ability to separately investigate oriented and unoriented amorphous domains in intact natural plant tissue. Matrix orientation is evaluated using NMR quadrupolar interactions in small deuterated probe molecules absorbed into bulk Liriodendron tulipifera sapwood. Ethylene glycol-d(4) deuterium spectra reveal two distinct amorphous domains, a highly oriented phase in the secondary wall S2 layer and an isotropic domain probably reflecting the compound middle lamella (CML). The oriented and isotropic signal areas exhibit thermally reversible changes, postulated to reflect probe redistribution between the S2 layer and the CML. Preliminary studies on a more powerful wood swelling agent, N,N-dimethylformamide-d(1), are also discussed. This (2)H NMR technique provides a new avenue for analysis and understanding of lignocellulose ultrastructure and promises to create new insights in correlating biomass processing with morphological change.  相似文献   

20.
In this study, we aimed to investigate the adaptation of blood pressure (BP), heart rate (HR), and locomotor activity (LA) circadian rhythms to light cycle shift in transgenic rats with a deficit in brain angiotensin [TGR(ASrAOGEN)]. BP, HR, and LA were measured by telemetry. After baseline recordings (bLD), the light cycle was inverted by prolonging the light by 12 h and thereafter the dark period by 12 h, resulting in inverted dark-light (DL) or light-dark (LD) cycles. Toward that end, a 24-h dark was maintained for 14 days (free-running conditions). When light cycle was changed from bLD to DL, the acrophases (peak time of curve fitting) of BP, HR, and LA shifted to the new dark period in both SD and TGR(ASrAOGEN) rats. However, the readjustment of the BP and HR acrophases in TGR(ASrAOGEN) rats occurred significantly slower than SD rats. The LA acrophases changed similarly in both strains. When light cycle was changed from DL to LD by prolonging the dark period by 12 h, the reentrainment of BP and LA occurred faster than the previous shift in both strains. The readjustment of the BP and HR acrophases in TGR(ASrAOGEN) rats occurred significantly slower than SD rats. In free-running conditions, the circadian rhythms of the investigated parameters adapted in TGR(ASrAOGEN) and SD rats in a similar manner. These results demonstrate that the brain RAS plays an important role in mediating the effects of light cycle shifts on the circadian variation of BP and HR. The adaptive behavior of cardiovascular circadian rhythms depends on the initial direction of light-dark changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号