首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
Aluminum (Al) stress represses mitochondrial respiration and produces reactive oxygen species (ROS) in plants. Mitochondrial alternative oxidase (AOX) uncouples respiration from mitochondrial ATP production and may improve plant performance under Al stress by preventing excess accumulation of ROS. We tested respiratory changes and ROS production in isolated mitochondria and whole cell of tobacco (SL, ALT 301) under Al stress. Higher capacities of AOX pathways relative to cytochrome pathways were observed in both isolated mitochondria and whole cells of ALT301 under Al stress. AOX1 when studied showed higher AOX1 expression in ALT 301 than SL cells under stress. In order to study the function of tobacco AOX gene under Al stress, we produced transformed tobacco cell lines by introducing NtAOX1 expressed under the control of the cauliflower mosaic virus (CaMV) 35 S promoter in sensitive (SL) Nicotiana tabacum L. cell lines. The enhancement of endogenous AOX1 expression and AOX protein with or without Al stress was in the order of transformed tobacco cell lines > ALT301 > wild type (SL). A decreased respiratory inhibition and reduced ROS production with a better growth capability were the significant features that characterized AOX1 transformed cell lines under Al stress. These results demonstrated that AOX plays a critical role in Al stress tolerance with an enhanced respiratory capacity, reducing mitochondrial oxidative stress burden and improving the growth capability in tobacco cells.  相似文献   

2.
Potential mechanisms of Al toxicity measured as Al-induced inhibition of growth in cultured tobacco cells (Nicotiana tabacum, nonchlorophyllic cell line SL) and pea (Pisum sativum) roots were investigated. Compared with the control treatment without Al, the accumulation of Al in tobacco cells caused instantaneously the repression of mitochondrial activities [monitored by the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and the uptake of Rhodamine 123] and, after a lag of about 12 h, triggered reactive oxygen species (ROS) production, respiration inhibition, ATP depletion, and the loss of growth capability almost simultaneously. The presence of an antioxidant, butylated hydroxyanisol, during Al treatment of SL cells prevented not only ROS production but also ATP depletion and the loss of growth capability, suggesting that the Al-triggered ROS production seems to be a cause of ATP depletion and the loss of growth capability. Furthermore, these three late events were similarly repressed in an Al-tolerant cell line (ALT301) isolated from SL cells, suggesting that the acquisition of antioxidant functions mimicking butylated hydroxyanisol can be a mechanism of Al tolerance. In the pea root, Al also triggered ROS production, respiration inhibition, and ATP depletion, which were all correlated with inhibition of root elongation. Taken together, we conclude that Al affects mitochondrial functions, which leads to ROS production, probably the key critical event in Al inhibition of cell growth.  相似文献   

3.
Mitochondria play important roles in animal apoptosis and are implicated in salicylic acid (SA)-induced plant resistance to viral pathogens. In a previous study, we demonstrated that SA induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. In the present study, we report that plant programmed cell death induced during pathogen elicitor-induced hypersensitive response (HR) is also associated with altered mitochondrial functions. Harpin, an HR elicitor produced by Erwinia amylovora, induced inhibition of ATP synthesis in tobacco cell cultures. Inhibition of ATP synthesis occurred almost immediately after incubation with harpin and preceded hypersensitive cell death induced by the elicitor. Diphenylene iodonium, an inhibitor of the oxidative burst, did not block harpin-induced inhibition of ATP synthesis or cell death, suggesting that oxidative burst was not the direct cause for these two harpin-induced processes. Unlike SA, harpin had no significant effect on total respiratory O2 uptake of treated cells. However, respiration of harpin-treated tobacco cells became very sensitive to the alternative oxidase inhibitors salicyl-hydroxamic acid and n-propyl gallate. Thus, harpin treatment resulted in reduced capacity of mitochondrial cytochrome pathway electron transport, which could lead to the observed inhibition of ATP synthesis. Given the recently demonstrated roles of mitochondria in apoptosis, this rapid inhibition of mitochondrial functions may play a role in harpin-induced hypersensitive cell death.  相似文献   

4.
Nitric oxide (NO) and its derivatives inhibit mitochondrial respiration by a variety of means. Nanomolar concentrations of NO immediately, specifically and reversibly inhibit cytochrome oxidase in competition with oxygen, in isolated cytochrome oxidase, mitochondria, nerve terminals, cultured cells and tissues. Higher concentrations of NO and its derivatives (peroxynitrite, nitrogen dioxide or nitrosothiols) can cause irreversible inhibition of the respiratory chain, uncoupling, permeability transition, and/or cell death. Isolated mitochondria, cultured cells, isolated tissues and animals in vivo display respiratory inhibition by endogenously produced NO from constitutive isoforms of NO synthase (NOS), which may be largely mediated by NO inhibition of cytochrome oxidase. Cultured cells expressing the inducible isoform of NOS (iNOS) can acutely and reversibly inhibit their own cellular respiration and that of co-incubated cells due to NO inhibition of cytochrome oxidase, but after longer-term incubation result in irreversible inhibition of cellular respiration due to NO or its derivatives. Thus the NO inhibition of cytochrome oxidase may be involved in the physiological and/or pathological regulation of respiration rate, and its affinity for oxygen.  相似文献   

5.
Rossi  A.  Kay  L.  Saks  V. 《Molecular and cellular biochemistry》1998,184(1-2):401-408
Our aim was to carefully analyse the time-dependent changes that affect the mitochondrial function of myocardial cells during and after an ischemic episode. To this end, variables characterizing mitochondrial function have been evaluated on myocardial samples from isolated rat hearts subjected to different conditions of ischemia. The technique of permeabilized fibers was used in order to evaluate the mitochondrial function whilst retaining intracellular structure.The earliest alteration that could be detected was a decrease in the stimulatory effect of creatine on mitochondrial respiration. This alteration became more pronounced as the severity (or duration) of the ischemia increased. Afterwards, a significant decrease in the apparent Km of mitochondrial respiration for ADP also appeared, followed by a diminution of the maximal respiration rate which was partly restored by adding cytochrome c. Finally, for the most severe conditions of ischemia, the basal respiratory rate also increased. These observations are indicative of a sequence of alterations affecting first the intermembrane space, then the outer mitochondrial membrane, and finally the inner membrane. The discussion is focused on the very early alterations, that could not be detected using the conventional techniques of isolated mitochondria. We postulate that these alterations to the intermembrane space and outer mitochondrial membrane can induce disturbances both in the channelling of energy from the mitochondria, and on the signalling towards the mitochondria. The potential consequences on the regulation of the production of energy (ATP, PC) by the mitochondria are evoked.  相似文献   

6.
This study examines the effect on mitochondrial respiration and permeability of in vivo and in vitro aluminium (Al) exposure. Rats were treated intraperitoneally with AlCl3 to achieve serum and liver Al concentrations comparable to those seen in Al-related disorders. Mitochondria isolated from Al-treated rats had higher (p<0.01) Al concentration, lower (p<0.05) state 3 respiration, respiratory control (RCR), and ADP/O ratio (succinate substrate), and greater passive swelling in 100 mM KCl or 200 mM NH4NO3 than controls. The in vitro addition of Al (0–180 μM) to mitochondria from normal rats also decreased (p<0.01) state 3 respiration, RCR, and ADP/O and stimulated passive swelling in KCl and NH4NO3 at 42–180 μM Al. These studies show that Al depresses mitochondrial energy metabolism and increases membrane permeability. The toxicity associated with Al may be related to its effect on mitochondria.  相似文献   

7.
Huntington’s disease results from expansion of the polyglutamine (PolyQ) domain in the huntingtin protein. Although the cellular mechanism by which pathologic-length PolyQ protein causes neurodegeneration is unclear, mitochondria appear central in pathogenesis. We demonstrate in isolated mitochondria that pathologic-length PolyQ protein directly inhibits ADP-dependent (state 3) mitochondrial respiration. Inhibition of mitochondrial respiration by PolyQ protein is not due to reduction in the activities of electron transport chain complexes, mitochondrial ATP synthase, or the adenine nucleotide translocase. We show that pathologic-length PolyQ protein increases the production of reactive oxygen species in isolated mitochondria. Impairment of state 3 mitochondrial respiration by PolyQ protein is reversed by addition of the antioxidants N-acetyl-l-cysteine or cytochrome c. We propose a model in which pathologic-length PolyQ protein directly inhibits mitochondrial function by inducing oxidative stress.  相似文献   

8.
Hydrogen sulfide is enzymatically produced in mammalian tissues and functions as a gaseous transmitter. However, H(2)S is also highly toxic as it inhibits mitochondrial respiration at the level of cytochrome c oxidase, which additionally is involved in sulfide oxidation. The accumulation of toxic sulfide levels contributes to the pathology of some diseases. This paper demonstrates that sulfide toxicity can be modified, and dehydroascorbic acid functions as an effector in this process. It significantly reduces the inhibitory effect of sulfide on cytochrome c oxidase, resulting in higher rates of respiration and sulfide oxidation in rat mitochondria. After the addition of dehydroascorbic acid mitochondria maintained more than 50% of the oxygen consumption and ATP production rates with different substrates in the presence of high concentrations of sulfide that would normally lead to complete inhibition. Dehydroascorbic acid significantly increased the sulfide concentration necessary to cause half maximal inhibition of mitochondrial respiration and thus completely prevented inhibition at low, physiological sulfide concentrations. In addition, sulfide oxidation was stimulated and led to ATP production even at high concentrations. The decrease in sulfide toxicity was more pronounced when analyzing supermolecular functional units of the respiratory chain than in isolated cytochrome c oxidase activity. Furthermore, the protective effect of dehydroascorbic acid at high sulfide concentrations was completely abolished by quantitative solubilization of mitochondrial membrane proteins with dodeclymaltoside. These results suggest that binding of cytochrome c oxidase to other proteins probably within respiratory chain supercomplexes is involved in the modulation of sulfide oxidation and toxicity by dehydroascorbic acid.  相似文献   

9.
Neuromodulatory delta sleep inducing peptide (DSIP) seems to be implicated in the attenuation of stress-induced pathological metabolic disturbances in various animal species and human beings. Mitochondria, as cell organelles, are considered especially sensitive to stress conditions. In this work, the influence of DSIP and Deltaran((R))-a recently developed product based upon DSIP-on processes of oxidative phosphorylation and ATP production in rat brain mitochondria and rat brain homogenates was studied. A polarographic measurement of oxygen consumption was applied to evaluate the impact of DSIP on maximal rates of mitochondrial respiration and coupling of respiration to ATP production. We provide evidence that DSIP affected the efficiency of oxidative phosphorylation on isolated rat brain mitochondria. This peptide significantly increased the rate of phosphorylated respiration V3, while the rate of uncoupled respiration V(DNP) remaining unchanged. It enhanced the respiratory control ratio RCR and the rate of ADP phosphorylation. DSIP and Deltaran exhibited the same action in rat brain homogenates. We also examined the influence of DSIP under hypoxia when mitochondrial respiratory activity is altered. In rats subjected to hypoxia, we detected a significant stress-mediated reduction of V3 and ADP/t values. Pretreatment of rats with DSIP at the dose of 120 microgram/kg (i.p.) prior to their subjection to hypoxia completely inhibited hypoxia-induced reduction of mitochondrial respiratory activity. The revealed capacity of DSIP to enhance the efficiency of oxidative phosphorylation found in vitro experiments could contribute to understanding pronounced stress protective and antioxidant action of this peptide in vivo.  相似文献   

10.
The events that precipitate cell death and the stress proteins responsible for cytoprotection during ATP depletion remain elusive. We hypothesize that exposure to metabolic inhibitors damages mitochondria, allowing proapoptotic proteins to leak into the cytosol, and suggest that heat stress-induced hsp72 accumulation prevents mitochondrial membrane injury. To test these hypotheses, renal epithelial cells were transiently ATP depleted with sodium cyanide and 2-deoxy-D-glucose in the absence of medium dextrose. Recovery from ATP depletion was associated with the release into the cytosol of cytochrome c and apoptosis-inducing factor (AIF), proapoptotic proteins that localize to the intermitochondrial membrane space. Concomitant with mitochondrial cytochrome c leak, a seven- to eightfold increase in caspase 3 activity was observed. In controls, state III mitochondrial respiration was reduced by 30% after transient exposure to metabolic inhibitors. Prior heat stress preserved mitochondrial ATP production and significantly reduced both cytochrome c release and caspase 3 activation. Despite less cytochrome c release, prior heat stress increased binding between cytochrome c and hsp72. The present study demonstrates that mitochondrial injury accompanies exposure to metabolic inhibitors. By reducing outer mitochondrial membrane injury and by complexing with cytochrome c, hsp72 could inhibit caspase activation and subsequent apoptosis.  相似文献   

11.
Ataxia Telangiectasia (AT) patients are particularly sensitive to oxidative-nitrosative stress. Nitric oxide (NO) controls mitochondrial respiration via the reversible inhibition of complex IV. The mitochondrial response to NO of AT lymphoblastoid cells was investigated. Cells isolated from three patients and three intrafamilial healthy controls were selected showing within each group a normal diploid karyotype and homogeneous telomere length. Different complex IV NO-inhibition patterns were induced by varying the electron flux through the respiratory chain, using exogenous cell membrane permeable electron donors. Under conditions of high electron flux the mitochondrial NO inhibition of respiration was greater in AT than in control cells (P< or =0.05). This property appears peculiar to AT, and correlates well to the higher concentration of cytochrome c detected in the AT cells. This finding is discussed on the basis of the proposed mechanism of reaction of NO with complex IV. It is suggested that the peculiar response of AT mitochondria to NO stress may be relevant to the mitochondrial metabolism of AT patients.  相似文献   

12.
Energy catastrophe, when mitochondria hydrolyze glycolytic ATP instead of producing respiratory ATP, has been modeled. In highly glycolyzing HeLa cells, 30-50% of the population survived after inhibition of respiration and uncoupling of oxidative phosphorylation for 2-4 days. The survival was accompanied by selective elimination of mitochondria. This type of mitoptosis includes (i) fission of mitochondrial filaments, (ii) clustering of the resulting roundish mitochondria in the perinuclear area, (iii) occlusion of mitochondrial clusters by a membrane (formation of a "mitoptotic body"), (iv) decomposition of mitochondria inside this body to small membrane vesicles, (v) protrusion of the body from the cell, and (vi) disruption of the body boundary membrane. Autophagy was not involved in this mitoptotic program. Increased production of reactive oxygen species (ROS) was necessary for execution of the program, since antioxidants prevent mitoptosis and kill the cells treated with the mitochondrial poisons as if a ROS-linked mitoptosis serves for protection of the cells under conditions of severe mitochondrial stress. It is suggested that exocytosis of mitoptotic bodies may be involved in maturation of reticulocytes and lens fiber cells.  相似文献   

13.
Skeletal muscle exhibits considerable variation in mitochondrial content among fiber types, but it is less clear whether mitochondria from different fiber types also present specific functional and regulatory properties. The present experiment was undertaken on ten 170-day-old pigs to compare functional properties and control of respiration by adenine nucleotides in mitochondria isolated from predominantly slow-twitch (Rhomboideus (RM)) and fast-twitch (Longissimus (LM)) muscles. Mitochondrial ATP synthesis, respiratory control ratio (RCR) and ADP-stimulated respiration with either complex I or II substrates were significantly higher (25-30%, P<0.05) in RM than in LM mitochondria, whereas no difference was observed for basal respiration. Based on mitochondrial enzyme activities (cytochrome c oxidase [COX], F0F1-ATPase, mitochondrial creatine kinase [mi-CK]), the higher ADP-stimulated respiration rate of RM mitochondria appeared mainly related to a higher maximal oxidative capacity, without any difference in the maximal phosphorylation potential. Mitochondrial K(m) for ADP was similar in RM (4.4+/-0.9 microM) and LM (5.9+/-1.2 microM) muscles (P>0.05) but the inhibitory effect of ATP was more marked in LM (P<0.01). These findings demonstrate that the regulation of mitochondrial respiration by ATP differs according to muscle contractile type and that absolute muscle oxidative capacity not only relies on mitochondrial density but also on mitochondrial functioning per se.  相似文献   

14.
Mitochondria are the major ATP producer of the mammalian cell. Moreover, mitochondria are also the main intracellular source and target of reactive oxygen species (ROS) that are continually generated as by-products of aerobic metabolism in human cells. A low level of ROS generated from the respiratory chain was recently proposed to take part in the signaling from mitochondria to the nucleus. Several structural characteristics of mitochondria and the mitochondrial genome enable them to sense and respond to extracellular and intracellular signals or stresses in order to sustain the life of the cell. It has been established that mitochondrial respiratory function declines with age, and that defects in the respiratory chain increase the production of ROS and free radicals in mitochondria. Within a certain concentration range, ROS may induce stress responses of the cell by altering the expression of a number of genes in order to uphold energy metabolism to rescue the cell. However, beyond this threshold, ROS may elicit apoptosis by induction of mitochondrial membrane permeability transition and release of cytochrome c. Intensive research in the past few years has established that mitochondria play a pivotal role in the early phase of apoptosis in mammalian cells. In this article, the role of mitochondria in the determination of life and death of the cell is reviewed on the basis of recent findings gathered from this and other laboratories.  相似文献   

15.
In nutrient medium, aluminium (Al) accumulation in tobacco cells occurs only in the presence of ferrous ion [Fe(II)]. The localization of Al was examined to elucidate a mechanism of Al accumulation. After the digestion of Al-treated cells with cellulase and pectolyase together, the resulting spheroplasts contained as much Al as the intact cells. However, the cell walls isolated from Al-treated cells also contained as much Al as the intact cells. Comparison of sugar and Al contents in polysaccharide components extracted chemically from cell walls isolated from intact cells and spheroplasts revealed that the enzymes digested most of the cellulose and hemicellulose, but only half of the pectin, and that Al mainly existed in the pectin remaining in the spheroplasts. Gel-permeation chromatography of the pectin fraction (NH4-oxalate extract) from the cell walls of the intact cells indicated that Al was associated with small polysaccharides of approximately 3–7 kDa. These results suggest that a minor part of pectin is a major site of Al accumulation. The content of cell wall pectin increased during Al treatment in nutrient medium. Taken together, we hypothesize that Al may bind to the pectin newly produced during Al treatment.  相似文献   

16.
In this study, we investigated whether changes in mitochondrial abundance, ultrastructure and activity are involved in the respiratory cold acclimation response in leaves of the cold-hardy plant Arabidopsis thaliana. Confocal microscopy [using plants with green fluorescence protein (GFP) targeted to the mitochondria] and transmission electron microscopy (TEM) were used to visualize changes in mitochondrial morphology, abundance and ultrastructure. Measurements of respiratory flux in isolated mitochondria and intact leaf tissue were also made. Warm-grown (WG, 25/ 20 degrees C day/night), 3-week cold-treated (CT) and cold-developed (CD) leaves were sampled. Although CT leaves exhibited some evidence of acclimation (as evidenced by higher rates of respiration at moderate measurement temperatures), it was only the CD leaves that were able to re-establish respiratory flux within the cold. Associated with the recovery of respiratory flux in the CD leaves were: (1) an increase in the total volume of mitochondria per unit volume of tissue in epidermal cells; (2) an increase in the ratio of cristae to matrix within mesophyll cell mitochondria; and (3) an increase in the capacity of the energy-producing cytochrome pathway in mitochondria isolated from whole leaf homogenates. Regardless of growth temperature, we found that contrasting cell types exhibited distinct differences in mitochondrial ultrastructure, morphology and abundance. Collectively, our data demonstrated the diversity and tissue-specific nature of mitochondrial responses that underpin respiratory acclimation to the cold, and revealed the heterogeneity of mitochondrial structure and abundance that exists within leaves.  相似文献   

17.
Membrane permeability transition (MPT) of mitochondria has an important role in apoptosis of various cells. The classic type of MPT is characterized by increased Ca(2+) transport, membrane depolarization, swelling, and sensitivity to cyclosporin A. In this study, we investigated whether L-carnitine suppresses oleic acid-induced MPT using isolated mitochondria from rat liver. Oleic acid-induced MPT in isolated mitochondria, inhibited endogenous respiration, caused membrane depolarization, and increased large amplitude swelling, and cytochrome c (Cyt. c) release from mitochondria. L-Carnitine was indispensable to beta-oxidation of oleic acid in the mitochondria, and this reaction required ATP and coenzyme A (CoA). In the presence of ATP and CoA, L-carnitine stimulated oleic acid oxidation and suppressed the oleic acid-induced depolarization, swelling, and Cyt. c release. L-Carnitine also contributed to maintaining mitochondrial function, which was decreased by the generation of free fatty acids with the passage of time after isolation. These results suggest that L-carnitine acts to maintain mitochondrial function and suppresses oleic acid-mediated MPT through acceleration of beta-oxidation.  相似文献   

18.
A synthetic polyanion composed of styrene, maleic anhydride, and methacrylic acid (molar ratio 56:37:7) significantly inhibited the respiration of isolated rat liver mitochondria in a time-dependent fashion that correlated with 1) collapse of the mitochondrial membrane potential and 2) high amplitude mitochondrial swelling. The process is apparently Ca(2+) dependent. Since it is blocked by cyclosporin A, the process is ascribed to induction of the mitochondrial permeability transition. In mitoplasts, i.e., mitochondria lacking their outer membranes, the polyanion rapidly blocked respiration. After incubation of rat liver mitochondria with the polyanion, cytochrome c was released into the incubation medium. In solution, the polyanion modified by conjugation with fluorescein formed a complex with cytochrome c. Addition of the polyanion to cytochrome c-loaded phosphatidylcholine/cardiolipin liposomes induced the release of the protein from liposomal membrane evidently due to coordinated interplay of Coulomb and hydrophobic interactions of the polymer with cytochrome c. We conclude that binding of the polyanion to cytochrome c renders it inactive in the respiratory chain due to exclusion from its native binding sites. Apparently, the polyanion interacts with cytochrome c in mitochondria and releases it to the medium through breakage of the outer membrane as a result of severe swelling. Similar properties were demonstrated for the natural polyanion, tobacco mosaic virus RNA. An electron microscopy study confirmed that both polyanions caused mitochondrial swelling. Exposure of cerebellar astroglial cells in culture to the synthetic polyanion resulted in cell death, which was associated with nuclear fragmentation.  相似文献   

19.
Aging is accompanied by mitochondrial dysfunction related with lowering of the respiratory complex activity and decrease of ATP synthesis, as well as by an enhancement of oxidative stress and increased sensitivity to mitochondrial permeability transition pore (mPTP) opening in mitochondral triggering the programmed cell death. In the present work we studied the effect of natural antioxidant (melatonin) on parameters of mPTP detected in non-synaptic mitochondria isolated from the brain of young and old rats (3 and 18 months, resp.) with different melatonin treatments; namely, melatonin was either directly applied to the mitochondrial suspension or chronically administered to rats with drinking water. The data obtained have shown that mitochondria isolated from brain of old rats were more susceptive to induction of mPTP. Melatonin added directly to suspension of brain mitochondria isolated from young rats demonstrated a proapoptotic effect. A prolonged chronical treatment with melatonin of old rats produced an anti-apoptotic protective effect. Non-synaptic mitochondria isolated from the brain of old rats treated with melatonin were more resistant to the mPTP opening and demonstrated the activation of respiration of mitochondria as compared to the untreated rats.  相似文献   

20.
Respiratory activities in chloramphenicol-treated tobacco cells   总被引:1,自引:0,他引:1  
Chloramphenicol (CAP) inhibited tobacco cell growth as shown by a reduction (34%) of cell mass 4 days after treatment. The rates of cell respiration were slightly higher than control under coupled conditions. However, CAP-treated cells showed a decreased maximal capacity of the cytochrome pathway (48%) and an increased maximal capacity of alternative path (56%) 4 days after treatment. In purified mitochondria, the rates of NADH or malate oxidation under state 4 conditions were not significantly changed by CAP treatment. However, the state 3 rates were 34–40% lower in CAP-treated than in control mitochondria. Succinate oxidation decreased by 31–46% under both state 4 and state 3 conditions after CAP treatment. The activities of complexes I, III, and IV, which contain mitochondrially encoded subunits, decreased by about 50% in CAP-treated mitochondria. There was also a decrease in the contents of mitochondrial cytochromes. Unexpectedly, the activities of complex II and the matrix-facing rotenone-insensitive NADH dehydrogenase, which are thought to be nuclear-encoded, also declined. The activities of external NADH dehydrogenase, NAD-linked malic enzyme, and fumarase remained unchanged after CAP treatment. There was a slight increase in the activity and protein level of alternative oxidase. An electrochemical gradient across the mitochondrial membranes was observed by Rhodamine 123 staining in CAP-treated cells. However, the morphology of most of the mitochondria changed from spherical to vermicular. A method for purifying a high yield of intact mitochondria from tobacco cell suspension cultures is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号