首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prostacyclin (PGI2) is released by vascular endothelial cells and serves as a potent vasodilator, inhibitor of platelet aggregation (anti-thrombotic), and moderator of vascular smooth muscle cell proliferation-migration-differentiation (anti-atherosclerotic). These actions are mediated via a seven transmembrane-spanning G-protein coupled receptor (GPCR), known as the human prostacyclin receptor or hIP. Animal studies using prostacyclin receptor knock-out (IP-/-) mice have revealed increased propensities towards thrombosis, intimal hyperplasia, atherosclerosis, restenosis, as well as reperfusion injury. Of further importance has been the world-wide withdrawal of selective COX-2 inhibitors, due to their discriminating suppression of COX-2-derived PGI2 and its cardioprotective effects, leading to increased cardiovascular events, including myocardial infarction and thrombotic stroke. Over the last decade, mutagenesis studies of the IP receptor, in conjunction with in vitro functional assays and molecular modeling, have provided critical insights into the molecular mechanisms of both agonist binding and receptor activation. Most recently, the discovery of naturally-occurring and dysfunctional mutations within the hIP has provided additional insights into the proposed cardioprotective role of prostacyclin. The aim of this review is to summarize the most recent findings regarding hIP receptor structure-function that have developed through the study of both synthetic and naturally-occurring mutations.  相似文献   

2.
We have investigated the effects of insulin on the synthesis of prostacyclin and cell proliferation in cultured vascular smooth muscle cells, which have been thought to play important roles in the development of atherosclerosis. Prostacyclin was measured as 6-keto-PGF1 alpha in the culture medium, and cell proliferation as incorporation of [3H]thymidine into DNA. Our studies showed that insulin reduced production of prostacyclin and stimulated cell proliferation in SMC. Like insulin, dibutyryl cAMP inhibited the production of prostacyclin, whereas it did not stimulate cell proliferation. No significant changes in cAMP levels were found on the addition of insulin into the culture medium. Therefore, cAMP does not appear to be involved in the mechanisms of these insulin effects. These results again suggest that hyperinsulinemia could be one of the important factors in atherosclerosis.  相似文献   

3.
Vascular endothelial growth factor (VEGF) is essential for angiogenesis in health and pathophysiology, and it is currently a major focus for drug targeting in the development of treatments for diverse human diseases. Recently, we proposed that VEGF could also play a role as a vascular protective factor in the adult vasculature and in disease. In this model, vascular protection is defined as a VEGF-induced enhancement of endothelial functions that mediate the inhibition of vascular smooth muscle cell proliferation, enhanced endothelial cell survival, suppression of thrombosis, and anti-inflammatory effects. A feature of this model is that protective effects of VEGF are essentially independent of angiogenesis or endothelial cell proliferation. VEGF-dependent cell survival and VEGF-induced synthesis of nitric oxide and prostacyclin are likely to be key mediators of a vascular protective effect. Vascular protection should help to improve insight into the underlying mechanisms of cardiovascular actions of VEGF and prove valuable for developing novel therapeutic approaches to cardiovascular disease.  相似文献   

4.
Recent studies of cyclooxygenase-2 (COX-2) inhibitors suggest that the balance between thromboxane and prostacyclin is a critical factor in cardiovascular homeostasis. Disruption of prostacyclin signaling by genetic deletion of the receptor or by pharmacological inhibition of COX-2 is associated with increased atherosclerosis and restenosis after injury in animal models and adverse cardiovascular events in clinical trials (Vioxx). Human vascular smooth muscle cells (VSMC) in culture exhibit a dedifferentiated, migratory, proliferative phenotype, similar to what occurs after arterial injury. We report that the prostacyclin analog iloprost induces differentiation of VSMC from this synthetic, proliferative phenotype to a quiescent, contractile phenotype. Iloprost induced expression of smooth muscle (SM)-specific differentiation markers, including SM-myosin heavy chain, calponin, h-caldesmon, and SM alpha-actin, as determined by Western blotting and RT-PCR analysis. Iloprost activated cAMP/protein kinase A (PKA) signaling in human VSMC, and the cell-permeable cAMP analog 8-bromo-cAMP mimicked the iloprost-induced differentiation. Both myristoylated PKA inhibitor amide-(14-22) (PKI, specific PKA inhibitor), as well as ablation of the catalytic subunits of PKA by small interfering RNA, opposed the upregulation of contractile markers induced by iloprost. These data suggest that iloprost modulates VSMC phenotype via G(s) activation of the cAMP/PKA pathway. These studies reveal regulation of VSMC differentiation as a potential mechanism for the cardiovascular protective effects of prostacyclin. This provides important mechanistic insights into the induction of cardiovascular events with the use of selective COX-2 inhibitors.  相似文献   

5.
Conflicting findings from clinical trials on the use of aspirin in preventing myocardial infarction emphasize the importance of understanding the effects of aspirin on vascular cells. Cultured vascular endothelial cells and smooth muscle cells of human, rat and bovine origin synthesized prostacyclin, a key component in vascular homeostasis, when superfused with 14C arachidonic acid. Prostacyclin synthesis was inactivated following brief treatment with aspirin, which irreversibly acetylates cyclooxygenase. Marked differences were observed between endothelial and smooth muscle cells in the recovery of cyclooxygenase after aspirin treatment. Smooth muscle cells recovered within 3 hours by a process that required serum factors replaceable by epidermal growth factor (EGF) and TGF-beta. Recovery in both smooth muscle and endothelial cells was blocked by cycloheximide but not by actinomycin-D. Endothelial cell recovery occurred much more slowly, requiring up to 24 hours and was not dependent on serum factors or EGF. Furthermore, it was suppressed by growth inducing agents such as endothelial cell growth factor (ECGF) and was enhanced by conditions favoring growth arrest and cellular differentiation. Regulation of expression and recovery of cyclooxygenase following inactivation by aspirin thus differs considerably in the endothelial and smooth muscle compartments of the vasculature.  相似文献   

6.
Adrenomedullin is known to inhibit cell proliferation in cultured rat vascular smooth muscle cells, through a cAMP-dependent process. The calcitonin receptor-like receptor could function as an adrenomedullin receptor when co-expressed with receptor activity-modifying protein 2. To determine whether vascular adrenomedullin receptor components, the calcitonin receptor-like receptor and the receptor activity-modifying protein 2, phenotypically change during in vitro culture conditions, we examined the expression of adrenomedullin receptor components, adrenomedullin-induced cAMP production, and the inhibition of cell proliferation in culture rat vascular smooth muscle cells during serial passages. The results demonstrated that the receptor activity-modifying protein 2 and calcitonin receptor-like receptor mRNAs increased in a passage-dependent manner in rat vascular smooth muscle cells. Furthermore, the responses of both the elevation of cAMP and the inhibition of cell proliferation became larger in vascular smooth muscle cells with an increasing number of passages. The results suggest that the increase in functional AM receptor during phenotypic change may in part contribute to the development of vascular lesions, such as in atherosclerosis.  相似文献   

7.
Epigenetic changes marked by DNA methylation have been proposed to play a role in age-related disease. We investigated DNA methylation changes in cardiovascular atherosclerotic tissues and in-vitro vascular senescence in the promoter of estrogen receptor β gene, which has essential roles in vascular function. Coronary atherosclerotic tissues showed higher methylation levels (28.7%) than normal appearing arterial (6.7%–10.1%) and venous tissues (18.2%). In comparing estrogen receptor β methylation between plaque and non-plaque regions in ascending aorta, common carotid artery, and femoral artery of two patients, the plaque lesions showed consistently higher methylation levels than non-plaque regions. Passage-dependent increased estrogen receptor β methylation was observed in three of six human aortic endothelial or smooth muscle cell lines cultured in-vitro to vascular senescence. Estrogen receptor β expression in these vascular cell lines was significantly activated by DNA-methyltransferase inhibition. This activity was augmented by histone deacetylase inhibition. These findings provide evidence of epigenetic dysregulation of estrogen receptor β in atherosclerosis and vascular aging. We suggest that focal epigenetic changes in estrogen receptor β contribute to the development of atherosclerosis and vascular aging.  相似文献   

8.
Considerable epidemiologic data suggest that dietary consumption of vitamin E reduces the incidence of cardiovascular disease. The precise mechanisms are not clear, but emerging data indicate that vitamin E has numerous activities that may, in part, explain its effect on vascular disease. In particular, vitamin E enhances the bioactivity of nitric oxide, inhibits smooth muscle proliferation, and limits platelet aggregation. One common mechanism to account for these effects of vitamin E is the inhibition of protein kinase C stimulation. In the setting of atherosclerosis, inhibition of protein kinase C by vitamin E would be expected to maintain normal vascular homeostasis and thus reduce the clinical incidence of cardiovascular disease.  相似文献   

9.
Arachidonic acid is the precursor of several potent derivatives that regulate physiological functions in the cardiovascular system. Thromboxane (TXA2) and prostacyclin (PGI2) are synthesized by the cyclooxygenase enzyme. The proaggregatory and vasoconstrictive TXA2 produced by platelets is opposed in vivo by the antiaggregatory and vasodilating activity of PGI2 synthesized by blood vessels. Arachidonic acid is also converted via a 5-lipoxygenase to leukotrienes, the vasoconstrictive components of SRSA. We have shown that this latter pathway is regulated by 15-HETE, a product of the 15-lipoxygenase present in lymphocytes. Confluent cultures of rat aorta smooth muscle cells (RSM) were superfused briefly with [14C]arachidonic acid. The products were isolated and analyzed by thin-layer chromatography-radioautography, high performance liquid chromatography, and gas-liquid chromatography-mass spectrometry. Prostacyclin (PGI2) was identified as the major product both by its biological properties in a platelet aggregation assay and by the mass spectrum of its tetra-trimethylsilylether-methyl ester derivative. Minor quantities of PGE2, PGD2, and PGF2 alpha were also synthesized. Three other compounds with chromatographic properties of mono-hydroxy eicosanoic acids were also formed in major amounts. These were shown to be cyclooxygenase products since their synthesis, together with that of prostacyclin, was blocked by the cyclooxygenase inhibitors aspirin (0.2 mM) and indomethacin (10 microM). Quantities of the hydroxy-eicosanoids were isolated from large scale incubations by silicic acid chromatography. Following methylation and reduction with platinum oxide/H2, the compounds were converted to their trimethylsilylether derivatives and analyzed by gas-liquid chromatography-mass spectrometry. The compounds were identified as 11-hydroxy-5,8,12,14-eicosatetraenoic acid (11-HETE), 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE), and hydroxy-5,8,10-heptadeca-trienoic acid (HHT) by simultaneous ion monitoring of characteristic ions at M/e ratios of 287, 258, 229 for 11-HETE and 343, 314, 173 for 15-HETE, and by comparison with the mass spectra of authentic samples. Rat smooth muscle cells, prelabeled by 24-hour incubation with [14C]arachidonic acid, released large amounts of prostacyclin together with enhanced amounts of 11- and 15-HETE in response to physiological levels of thrombin (0.5-5 units/ml). These experiments demonstrate that, in addition to the thromboxane antagonist prostacyclin, vascular smooth muscle cells produce significant quantities of the leukotriene inhibitor 15-HETE via the cyclooxygenase pathway in response to physiological stimuli such as thrombin. The release of both prostacyclin and 15-HETE by vascular smooth muscle cells may thus play an important role in vascular homeostasis.  相似文献   

10.
The role of nitric oxide in cardiovascular diseases   总被引:18,自引:0,他引:18  
Nitric oxide (NO) is a gaseous lipophilic free radical cellular messenger generated by three distinct isoforms of nitric oxide synthases (NOS), neuronal (nNOS), inducible (iNOS) and endothelial NOS (eNOS). NO plays an important role in the protection against the onset and progression of cardiovascular disease. Cardiovascular disease is associated with a number of different disorders including hypercholesterolaemia, hypertension and diabetes. The underlying pathology for most cardiovascular diseases is atherosclerosis, which is in turn associated with endothelial dysfunctional. The cardioprotective roles of NO include regulation of blood pressure and vascular tone, inhibition of platelet aggregation and leukocyte adhesion, and prevention smooth muscle cell proliferation. Reduced bioavailability of NO is thought to be one of the central factors common to cardiovascular disease, although it is unclear whether this is a cause of, or result of, endothelial dysfunction. Disturbances in NO bioavailability leads to a loss of the cardio protective actions and in some case may even increase disease progression. In this chapter the cellular and biochemical mechanisms leading to reduced NO bioavailability are discussed and evidence for the prevalence of these mechanisms in cardiovascular disease evaluated.  相似文献   

11.
Diet and endothelial function   总被引:1,自引:0,他引:1  
Endothelial dysfunction is one of the earliest events in atherogenesis. A consequence of endothelial damage is a lower availability of nitric oxide (NO), the most potent endogenous vasodilator. NO inhibits platelet aggregation, smooth muscle cell proliferation and adhesion of monocytes to endothelial cells. Endothelial dysfunction is present in patients with cardiovascular disease and/or coronary risk factors, such as hypertension, dyslipidemia, diabetes, smoking or hyperhomocysteinemia. At present, soluble markers and high resolution ultrasound of the brachial artery, have provided simple tools for the study of endothelial function and the effects of several interventions. It has been demonstrated that dietary factors may induce significant changes on vascular reactivity. Nutrients, such as fish oil, antioxidants, L-arginine, folic acid and soy protein have shown an improvement in endothelial function that can mediate, at least partially, the cardioprotective effects of these substances. Attention has been focused on dietary patterns in populations with lower prevalence of cardiovascular disease. There is some evidence suggesting that Mediterranean diet characterized by high consumption of vegetables, fish, olive oil and moderate wine consumption may have a positive effect on endothelial function. These results give us evidence on the significant role of diet on endothelial function and its impact on the pathogenesis of atherosclerosis.  相似文献   

12.
Prostacyclin synthase and thromboxane synthase signaling via arachidonic acid metabolism affects a number of tumor cell survival pathways such as cell proliferation, apoptosis, tumor cell invasion and metastasis, and angiogenesis. However, the effects of these respective synthases differ considerably with respect to the pathways described. While prostacyclin synthase is generally believed to be anti-tumor, a pro-carcinogenic role for thromboxane synthase has been demonstrated in a variety of cancers. The balance of oppositely-acting COX-derived prostanoids influences many processes throughout the body, such as blood pressure regulation, clotting, and inflammation. The PGI2/TXA2 ratio is of particular interest in-vivo, with the corresponding synthases shown to be differentially regulated in a variety of disease states. Pharmacological inhibition of thromboxane synthase has been shown to significantly inhibit tumor cell growth, invasion, metastasis and angiogenesis in a range of experimental models. In direct contrast, prostacyclin synthase overexpression has been shown to be chemopreventive in a murine model of the disease, suggesting that the expression and activity of this enzyme may protect against tumor development.  相似文献   

13.
14.
15.
Epigenetic changes marked by DNA methylation have been proposed to play a role in age-related disease. We investigated DNA methylation changes in cardiovascular atherosclerotic tissues and in-vitro vascular senescence in the promoter of estrogen receptor beta gene, which has essential roles in vascular function. Coronary atherosclerotic tissues showed higher methylation levels (28.7%) than normal appearing arterial (6.7%-10.1%) and venous tissues (18.2%). In comparing estrogen receptor beta methylation between plaque and non-plaque regions in ascending aorta, common carotid artery, and femoral artery of two patients, the plaque lesions showed consistently higher methylation levels than non-plaque regions. Passage-dependent increased estrogen receptor beta methylation was observed in three of six human aortic endothelial or smooth muscle cell lines cultured in-vitro to vascular senescence. Estrogen receptor beta expression in these vascular cell lines was significantly activated by DNA-methyltransferase inhibition. This activity was augmented by histone deacetylase inhibition. These findings provide evidence of epigenetic dysregulation of estrogen receptor beta in atherosclerosis and vascular aging. We suggest that focal epigenetic changes in estrogen receptor beta contribute to the development of atherosclerosis and vascular aging.  相似文献   

16.
Prostacyclin infused intravenously in human volunteers induces ex vivo inhibition of platelet aggregation, tachycardia and hypotension. The inhibition of platelet aggregation is obtained with slightly lower doses than those which exhibit cardiovascular effects.The cardiovascular effects disappeared within a few minutes after discontinuing the infusion of prostacyclin but the platelet effects were longer lasting.Prostacyclin did not have any effect on platelet count, platelet factor 3, accelerated partial thromboplastin time, prothrombin time, euglobulin clot lysis time, fibrinogen degradation products, blood glucose concentration or urine sodium potassium ratio.  相似文献   

17.
Thanassoulis G  Huyhn T  Giaid A 《Peptides》2004,25(10):1789-1794
Urotensin II (UII) has been found to be a potent vasoactive peptide in humans and in a number of relevant animal models of cardiovascular disease such as the mouse, rat and other non-human primates. This peptide with structural homology to somatostatin was first isolated from the urophysis of fish and was recently found to bind to an orphan receptor in mouse and human. Initially found to have potent vasoconstrictive activities in a variety of vessels from diverse species, it has also been shown to exert vasodilatation in certain vessels in the rat and human by various endothelium-dependent mechanisms. The various vasoactive properties of UII suggest that the peptide may have a physiological role in maintaining vascular tone and therefore may have a role in the pathophysiology of a number of human diseases such as heart failure. Moreover, UII has also been implicated as a mitogen of vascular smooth muscle cells suggesting a deleterious role in atherosclerosis and coronary artery disease. In addition, there is evidence to demonstrate that UII has multiple metabolic effects on cholesterol metabolism, glycemic control and hypertension and therefore may be implicated in the development of insulin resistance and the metabolic syndrome.  相似文献   

18.
19.
Physiological role of ROCKs in the cardiovascular system   总被引:9,自引:0,他引:9  
Rho-associated kinases (ROCKs), the immediate downstream targets of RhoA, are ubiquitously expressed serine-threonine protein kinases that are involved in diverse cellular functions, including smooth muscle contraction, actin cytoskeleton organization, cell adhesion and motility, and gene expression. Recent studies have shown that ROCKs may play a pivotal role in cardiovascular diseases such as vasospastic angina, ischemic stroke, and heart failure. Indeed, inhibition of ROCKs by statins or other selective inhibitors leads to the upregulation and activation of endothelial nitric oxide synthase (eNOS) and reduction of vascular inflammation and atherosclerosis. Thus inhibition of ROCKs may contribute to some of the cholesterol-independent beneficial effects of statin therapy. Currently, two ROCK isoforms have been identified, ROCK1 and ROCK2. Because ROCK inhibitors are nonselective with respect to ROCK1 and ROCK2 and also, in some cases, may be nonspecific with respect to other ROCK-related kinases such as myristolated alanine-rich C kinase substrate (MARCKS), protein kinase A, and protein kinase C, the precise role of ROCKs in cardiovascular disease remains unknown. However, with the recent development of ROCK1- and ROCK2-knockout mice, further dissection of ROCK signaling pathways is now possible. Herein we review what is known about the physiological role of ROCKs in the cardiovascular system and speculate about how inhibition of ROCKs could provide cardiovascular benefits. Rho GTPase; Rho-kinase; vascular endothelium; contraction; actin cytoskeleton; nitric oxide; statins  相似文献   

20.
The effects of elastase on prostacyclin biosynthesis in cultured rat aortic smooth muscle cells were investigated. Prostacyclin is the major product formed from arachidonic acid by aortic smooth muscle cells. When intact cells were incubated with elastase, a significant stimulatory effect on prostacyclin biosynthetic activity in cells was evident. However, the addition of elastase directly to the cell-free homogenates did not show any effects on prostacyclin biosynthesis. The maximal effect of elastase on the stimulation of prostacyclin biosynthesis without any cellular damage was observed at a concentration of 50 unit/ml elastase. Elastase also caused a marked release of arachidonic acid. At higher concentrations of elastase (75-100 units/ml), the release of arachidonic acid and prostacyclin synthesis was observed, but, at these concentrations of elastase, cells were slightly damaged. On the other hand, the releases of prostacyclin and arachidonic acid were markedly enhanced, when cells were preincubated with elastase (1 unit/ml) for 3 days. These results indicate that elastase, even at low concentrations, causes the releases of arachidonic acid and prostacyclin, especially when aortic smooth muscle cells are pre-treated with elastase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号