首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The septal pores in uredial mycelium of Puccinia graminis and P. recondita lack the septal swelling and septal pore cap (dolipore-parenthosome configuration) typically associated with the pores of previously investigated Homobasidiomycetidae and the Tremellales among the Heterobasidiomycetidae. The pores in young hyphae of these two species of Puccinia are characterized by the presence of a cytoplasmic matrix which apparently occludes the pore and acts as a plug, thus preventing the migration of organelles from cell to cell. Large vesicles are typically present at the periphery of the pore matrix and the matrix may be very incompletely bounded by a membrane. Nuclei and other cytoplasmic structures migrate from cell to cell through an opening in the septum lateral to the pore. The available evidence indicates that this peripheral gap in the septum results from a breakdown of a portion of an initially complete septum rather than from incomplete septum formation. In addition to the centripetally formed septa, the hyphae of P. graminis and P. recondita are further compartmentalized by shallow infoldings of the lateral wall and limited unilateral septum formation. There is apparent free passage of cellular material between adjacent compartments.  相似文献   

2.
Septum formation is initiated in Candida albicans by an electron transparent primary septum, which is then thickened on both sides to form secondary septa. Primary and secondary septa are incorporated into the bud scar, and secondary septum material only is incorporated into the birth scar.  相似文献   

3.
Development of hyphal septa (pseudosepta) in Allomyces macrogynus begins with the formation of five or more discontinuous pieces of wall material that project inward from the hyphal wall. Lateral fusion of these projections leaves a central pore in the septum that is later filled in by centripetal deposition of wall material. However, lateral fusion of the projections is not complete; peripheral pores remain in the rim of the mature septum. The position of cytoplasmic microtubules corresponds to the position of actively moving cellular particles and organelles. Allomyces reticulatus and A. arbuscula have similar septa.  相似文献   

4.
Moore , R. T., and J. H. Mc Alear . (Cornell U., Ithaca, N. Y.) Fine structure of mycota. 7. Observations on septa of Ascomycetes and Basidiomycetes. Amer. Jour. Bot. 49(1): 86–94. Illus. 1962.—Electron microscopy of 13 carpomycete species (5 Ascomycetes, 5 Basidiomycetes, and 3 Deuteromycetes) presents evidence that suggests there is an Ascomycete- and a Basidiomycete-type septum. The observed Ascomycete septa taper slightly or not at all toward a simple, clear-channel, central pore, while the observed Basidiomycete septa flare sharply and broadly at the center to produce what is termed a dolipore septum. On each side of this septum is a double membrane structure that is crescent-shaped in section. This is given the name parenthesome. These dolipore-parenthesome septa were found to be characteristic of basidiocarpic, dikaryotic, hyphae. Interpretative drawings of both types of septa are presented. From these and the micrographs, it is not difficult to see how materials, including nuclei, could pass through the Ascomycete-type septum, but it would appear that the modifications of the Basidiomycete-type septum while maintaining cytoplasmic continuity would prohibit nuclear migration in dikaryotic hyphae. It is postulated that as the plant and animal phylogenetic lines have developed actual diploidism, the terminal group of the fungi may have achieved functional diploidism. Of the 3 species of Deuteromycetes examined, 2, Aspergillus variecolor and Stilbum zacalloxanthum, have typical Ascomycete-type septa; the third, QM 7739, has Basidiomycete-type septa. This fungus is a species of Sclerotium, but the present confusion and lack of definitive information regarding the taxonomy, genetics, and perfect stage of this genus prohibit the enlarging at present on the possible significance of this observation.  相似文献   

5.
A 21-day subculture ofRhodosporidium toruloides Banno produced septate mycelium with hook-shaped cells over many septa. In the light microscope these hook-shaped cells appeared to be clamp connections; this feature might suggest thatR. toruloides belongs to the basidiomycetes. Electron micrographs, however, demonstrated that the hyphal septum above which the hook cell occurred and the back septum of the hook cell were tapered centripetally, contained a pore in the middle, and were typical of the ascomycete septum. Two electropaque bodies, believed to be similar to Woronin bodies, were observed occluding the pore in one hyphal septum above which was a hook cell. Melanospores in the 21-day subculture were produced terminally on hyphae and laterally above hook cells which occurred over ascomycete-type septa. Proliferating hook cells appeared similar to repeating croziers found in the ascomycetes. The walls of hyphal cells from the 21-day subculture demonstrated lenticular bodies and alternating electrolucent and electropaque lamellae. The walls of 12-hr dividing yeast cells were observed to be similarly lamellate, a characteristic which has been reported typical of heterobasidiomycetous yeasts. SinceR. toruloides exhibited ascomycetous and basidiomycetous features, a reconsideration of its present classification is suggested. TheRhodosporidium observations are a portion of a thesis submitted by JAJ-R in partial fulfillment of the requirements for the Master of Science degree, North Carolina State University. Supported in part by NIH Grant AI-07122 and USDA Experiment Station Project 5185 to the junior author and by NSF Fellowship GZ 919 to the senior author. To whom grateful acknowledgment is made for use of photographic facilities.  相似文献   

6.
The mode of spore differentiation in a strain of Streptomyces melanochromogenes was followed by analysis of ultrathin sections of sporulating aerial hyphae at various stages of sporogenesis. A special accent was laid on the formation of the sporulation septum and its alterations in the course of spore delimitation and separation. Distinct differences in formation and substructure have been observed between the cross walls of vegetative hyphae and the sporulation septa.Cross walls of vegetative hyphae are formed in a way typical for Gram-positive bacteria by a centripetal annular ingrowth of cytoplasmic membrane, on which wall material immediately is deposited. The development of the sporulation septa is characterized by the accumulation of amorphous material in addition to the newly synthesized wall layer inside the invaginating cytoplasmic membrane. This amorphous septal material will later be decomposed presumably by two lytic systems which cause the separation of the spores. The central region of the finished sporulation septum is perforated by microplasmodesmata. Spores are released by a break down of the surface sheath. The complete spores are enveloped by a twolayered cell wall and the spiny surface sheath.  相似文献   

7.
Hyphae of higher fungi are compartmentalized by septa. These septa contain a central pore that allows for inter‐compartmental and inter‐hyphal cytoplasmic streaming. The cytoplasm within the mycelium is therefore considered to be a continuous system. In this study, however, we demonstrate by laser dissection that 40% of the apical septa of exploring hyphae of Aspergillus oryzae are closed. Closure of septa correlated with the presence of a peroxisome‐derived organelle, known as Woronin body, near the septal pore. The location of Woronin bodies in the hyphae was dynamic and, as a result, plugging of the septal pore was reversible. Septal plugging was abolished in a ΔAohex1 strain that cannot form Woronin bodies. Notably, hyphal heterogeneity was also affected in the ΔAohex1 strain. Wild‐type strains of A. oryzae showed heterogeneous distribution of GFP between neighbouring hyphae at the outer part of the colony when the reporter was expressed from the promoter of the glucoamylase gene glaA or the α‐glucuronidase gene aguA. In contrast, GFP fluorescence showed a normal distribution in the case of the ΔAohex1 strain. Taken together, it is concluded that Woronin bodies maintain hyphal heterogeneity in a fungal mycelium by impeding cytoplasmic continuity.  相似文献   

8.

Background

Mycelia of higher fungi consist of interconnected hyphae that are compartmentalized by septa. These septa contain large pores that allow streaming of cytoplasm and even organelles. The cytoplasm of such mycelia is therefore considered to be continuous.

Methodology/Principal Findings

Here, we show by laser dissection that septa of Schizophyllum commune can be closed depending on the environmental conditions. The most apical septum of growing hyphae was open when this basidiomycete was grown in minimal medium with glucose as a carbon source. In contrast, the second and the third septum were closed in more than 50% and 90% of the cases, respectively. Interestingly, only 24 and 37% of these septa were closed when hyphae were growing in the absence of glucose. Whether a septum was open or closed also depended on physical conditions of the environment or the presence of toxic agents. The first septum closed when hyphae were exposed to high temperature, to hypertonic conditions, or to the antibiotic nourseothricin. In the case of high temperature, septa opened again when the mycelium was placed back to the normal growth temperature.

Conclusions/Significance

Taken together, it is concluded that the septal pores of S. commune are dynamic structures that open or close depending on the environmental conditions. Our findings imply that the cytoplasm in the mycelium of a higher fungus is not continuous perse.  相似文献   

9.
Summary Electron microscopic studies of thin sections of filaments, knots, resettes, gonidia, and gonidial-forming filaments of Leucothrix mucor were carried out. The cell wall is typical of gram-negative bacteria, with a double outer layer of variable thickness, a single thin middle layer which is probably peptidoglycan, and a double inner layer which is the cell membrane. The transverse septa of these filaments show two peptidoglycan layers, and no clearly demarked outer layer. During gonidial formation, there is a gradual rounding up of the cells, and the transverse septa become part of the gonidial wall. The cell membrane contains many invaginations, both along the outer wall and along the transverse septa. Thin sections through rosettes show the holdfast as material which is a heavily-staining amorphous material peripheral to the outer wall layer. Sections through knots show highly contorted cell walls, closely appressed. Fibrillar nuclear material, ribosomes, and storage granules can be seen within the cytoplasmic matrix.  相似文献   

10.
The hyphal walls of three mycobionts, isolated from the lichens Xanthoria parietina, Tornabenia intricata and Sarcogyne sp. were investigated by two techniques: microautoradiography of fungal colonies exposed to radioactive carbohydrate precursors; and binding, in vivo, of fluorescein conjugated lectins to hyphal walls of such colonies.N-[3H] acetylglucosamine was readily incorporated into tips, young hyphal walls and septa of the three mycobionts and the free-living fungus Trichoderma viride, but not into Phytophthora citrophthora, indicating that chitin is a major component of the mycobionts' hyphal walls. All three mycobionts, but neither of the free-living fungi, incorporated [3H] mannose and [3H] mannitol into their hyphal walls.Fluorescein-conjugated wheat germ agglutinin was bound to the hyphal walls of the three mycobionts and T. viride, but not to the walls of P. citrophthora; the binding pattern was similar to the grain pattern obtained in autoradiographs after short N-[3H] acetylglucosamine labelling. As wheat germ agglutinin binds specifically to chitin oligomers, the lectin binding tests further confirmed that chitin is a mycobiont hyphal wall component.Binding characteristics of several fluorescein-conjugated lectins to the three mycobionts indicated that this technique can yield useful information concerning the chemical composition of hyphal wall surfaces.List of abbreviations FITC fluorescein isothiocyanate - WGA wheat germ agglutinin - TCA trichloroacetic acid - PNA peanut agglutinin - LA lotus agglutinin - Glc NAc N-acetylglucosamine - ConA concanavalin A - SBA soybean agglutinin - WBA waxbean agglutinin Part of an M.Sc. thesis submitted by A. Braun to the Department of Botany, Tel Aviv University.  相似文献   

11.
Dennis D. Kunkel 《Protoplasma》1984,123(2):104-115
Summary An ultrastructural examination of cell division in two baeocyte producing cyanobacteria,Pleurocapsa minor andDermocarpa violaceae, reveals two distinct patterns of binary (transverse) fission. Septate binary fission, inPleurocapsa minor, involves centripetal synthesis and deposition of the mucopolymer cell wall layer (L 2). The ingrowth of the cytoplasmic membrane and L 1 cell wall layer, along with the synthesis of the L 2 cell wall layer, results in the formation of a prominent septum. Partitioning of the cell occurs by the constriction of the outer cell wall layers (L 3 and L 4) through the septum. InDermocarpa violaceae, constrictive binary fission occurs by the simultaneous ingrowth or constriction of the cytoplasmic membrane and all cell wall layers (L1, L2, L3, L4). Septate and constrictive binary fission may proceed symmetrically (medially) or asymmetrically (nonmedially). Multiple fission occurs regularly inDermocarpa violaceae and provides for a rapid means of reproduction when compared to binary fission. Successive radial and tangential divisions of the protoplast result in formation of many small daughter cells (baeocytes). The process of multiple fission is similar to septate binary fission with reduced septa being formed. However, constriction of the outer cell wall layers, through the septa, proceeds concurrently with septum formation.  相似文献   

12.
Calvo MA  Agut M 《Mycopathologia》2002,153(3):137-139
Woronin bodies are cytoplasmic organelles of filamentous fungi that can be observed on one, or both sides of each septum. The goal of this paper is to illustrate the presence of them in hyphae of Arthrinium aureum by means of scanning electron microscopy and to show that they act as a safety plug to close septa pores in hypha. Results show that Woronin bodies as an immediate response to prevent a cytoplasm loss. Results support hypothesis proposed previously in literature. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The cell wall of the blue-green alga Spirulina platensis was studied with the electron microscope using ultra-thin sectioning, shadowing, carbon-replication or freeze-etching techniques for specimen preparation. The cell wall could be resolved into four layers, L-I through L-IV. The L-I and L-III layers contain fibrillar material. The septum is a three-layered wall: an L-II layer sandwiched between L-I layers. The shape in vitro of isolated septa might be an artifact due to the preparation technique used. Certain structural properties of the septum seem to allow tangential stretching; they might be reflected in the flexible gliding mobility of Spirulina species. The outer, L-IV layer contains material longitudinally arranged along the trichome axis.  相似文献   

14.
15.
Septum formation in fungi is equivalent to cytokinesis. It differs mechanistically in filamentous ascomycetes (Pezizomycotina) from that of ascomycete yeasts by the retention of a central septal pore in the former group. However, septum formation in both groups is accomplished by contractile actin ring (CAR) assembly and constriction. The specific components regulating septal pore organization during septum formation are poorly understood. In this study, a novel Pezizomycotina-specific actin regulatory protein GlpA containing gelsolin domains was identified using bioinformatics. A glpA deletion mutant exhibited increased distances between septa, abnormal septum morphology and defective regulation of septal pore closure. In glpA deletion mutant hyphae, overaccumulation of actin filament (F-actin) was observed, and the CAR was abnormal with improper assembly and failure in constriction. In wild-type cells, GlpA was found at the septum formation site similarly to the CAR. The N-terminal 329 residues of GlpA are required for its localization to the septum formation site and essential for proper septum formation, while its C-terminal gelsolin domains are required for the regular CAR dynamics during septum formation. Finally, in this study we elucidated a novel Pezizomycotina-specific actin modulating component, which participates in septum formation by regulating the CAR dynamics.  相似文献   

16.
Summary Protoplasts were prepared from mycelium of Aspergillus niger N-402. Sucrose was used to induce the synthesis and secretion of invertase. Protoplasts secreted 2 forms of invertase, different to those secreted by the mycelium. 14C mannose was shown to be taken up by protoplasts and incorporated into secreted proteins.  相似文献   

17.
Microtubule‐organizing centers (MTOCs) are large, multi‐subunit protein complexes. Schizosaccharomyces pombe harbors MTOCs at spindle pole bodies, transient MTOCs in the division plane (eMTOCs) and nuclear‐envelope associated MTOCs in interphase cells (iMTOCs). In the filamentous fungus Aspergillus nidulans SPBs and septum‐associated MTOCs were described. Although comparable to S. pombe eMTOCs, A. nidulans sMTOCS are permanent septum‐associated structures. The composition of sMTOCs is poorly understood and how they are targeted to septa was unknown. Here, we show that in A. nidulans several SPB outer plaque proteins also locate to sMTOCs while other SPB proteins do not, including SfiA, a protein required for SPB duplication in Saccharomyces cerevisiae and S. pombe and PcpA, the anchor for γ‐TuSCs at the SPB inner plaque. The A. nidulans disordered protein Spa18Mto2 and the centrosomin‐domain containing protein ApsBMto1 were required for recruiting the γ‐TuRC component GcpC to sMTOCs and for seeding MT formation from septa. Testing different septum‐associated proteins for a role in sMTOC function, Spa10 was identified. It forms a septal pore disc structure, recruits Spa18 and ApsB to septa and is required for sMTOC activity. This is the first evidence for a septum‐specific protein, Spa10, as anchor for a specific class of MTOCs.  相似文献   

18.
This paper describes the effects of increased expression of the cell division genes ftsZ, ftsQ, and ssgA on the development of both solid- and liquid-grown mycelium of Streptomyces coelicolor and Streptomyces lividans. Over-expression of ftsZ in S. coelicolor M145 inhibited aerial mycelium formation and blocked sporulation. Such deficient sporulation was also observed for the ftsZ mutant. Over-expression of ftsZ also inhibited morphological differentiation in S. lividans 1326, although aerial mycelium formation was less reduced. Furthermore, antibiotic production was increased in both strains, and in particular the otherwise dormant actinorhodin biosynthesis cluster of S. lividans was activated in liquid- and solid-grown cultures. No significant alterations were observed when the gene dosage of ftsQ was increased. Analysis by transmission electron microscopy of an S. coelicolor strain over-expressing ssgA showed that septum formation had strongly increased in comparison to wild-type S. coelicolor, showing that SsgA clearly influences Streptomyces cell division. The morphology of the hyphae was affected such that irregular septa were produced with a significantly wider diameter, thereby forming spore-like compartments. This suggests that ssgA can induce a process similar to submerged sporulation in Streptomyces strains that otherwise fail to do so. A working model is proposed for the regulation of septum formation and of submerged sporulation.  相似文献   

19.
The establishment of growth polarity in Schizosaccharomyces pombe cells is a combined function of the cytoplasmic cytoskeleton and the shape of the cell wall inherited from the mother cell. The septum that divides the cylindrical cell into two siblings is formed midway between the growing poles and perpendicularly to the axis that connects them. Since the daughter cells also extend at their ends and form their septa at right angles to the longitudinal axis, their septal (division) planes lie parallel to those of the mother cell. To gain a better understanding of how this regularity is ensured, we investigated septation in spherical cells that do not inherit morphologically predetermined cell ends to establish poles for growth. We studied four mutants (defining four novel genes), over 95% of whose cells displayed a completely spherical morphology and a deficiency in mating and showed a random distribution of cytoplasmic microtubules, Tea1p, and F-actin, indicating that the cytoplasmic cytoskeleton was poorly polarized or apolar. Septum positioning was examined by visualizing septa and division scars by calcofluor staining and by the analysis of electron microscopic images. Freeze-substitution, freeze-etching, and scanning electron microscopy were used. We found that the elongated bipolar shape is not essential for the determination of a division plane that can separate the postmitotic nuclei. However, it seems to be necessary for the maintenance of the parallel orientation of septa over the generations. In the spherical cells, the division scars and septa usually lie at angles to each other on the cell surface. We hypothesize that the shape of the cell indirectly affects the positioning of the septum by directing the extension of the spindle.  相似文献   

20.
The new scleractinian coral genusHexasmiliopsis is described on the basis of material from the Early Aptian (Early Cretaceous) of Murcia (Spain). The new genus of the Heterocoeniidae family is characterised by its solitary growth form, a very strong main septum and the presence of apophysal septa. It is closely related to the generaHexasmilia (phaceloid growth form),Rodinosmilia andTiarasmilia (both without main septum). The genus is monospecific and represents only the type species,Hexasmiliopsis saldanai.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号