首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ATP-sensitive K+ (KATP) channels couple chemical signals to cellular activity, in which the control of channel opening and closure (i.e., channel gating) is crucial. Transmembrane helices play an important role in channel gating. Here we report that the gating of Kir6.2, the core subunit of pancreatic and cardiac KATP channels, can be switched by manipulating the interaction between two residues located in transmembrane domains (TM) 1 and 2 of the channel protein. The Kir6.2 channel is gated by ATP and proton, which inhibit and activate the channel, respectively. The channel gating involves two residues, namely, Thr71 and Cys166, located at the interface of the TM1 and TM2. Creation of electrostatic attraction between these sites reverses the channel gating, which makes the ATP an activator and proton an inhibitor of the channel. Electrostatic repulsion with two acidic residues retains or even enhances the wild-type channel gating. A similar switch of the pH-dependent channel gating was observed in the Kir2.1 channel, which is normally pH- insensitive. Thus, the manner in which the TM1 and TM2 helices interact appears to determine whether the channels are open or closed following ligand binding.*These authors contributed equally to this work.  相似文献   

2.
ATP-sensitive K+ (KATP) channels are gated by intracellular ATP, proton and phospholipids. The pore-forming Kir6.2 subunit has all essential machineries for channel gating by these ligands. It is known that channel gating involves the inner helix bundle of crossing in which a phenylalanine residue (Phe168) is found in the TM2 at the narrowest region of the ion-conduction pathway in the Kir6.2. Here we present evidence that Phe168-Kir6.2 functions as an ATP- and proton-activated gate via steric hindrance and hydrophobic interactions. Site-specific mutations of Phe168 to a small amino acid resulted in losses of the ATP- and proton-dependent gating, whereas the channel gating was well maintained after mutation to a bulky tryptophan, supporting the steric hindrance effect. The steric hindrance effect, though necessary, was insufficient for the gating, as mutating Phe168 to a bulky hydrophilic residue severely compromised the channel gating. Single-channel kinetics of the F168W mutant resembled the wild-type channel. Small residues increased Popen, and displayed long-lasting closures and long-lasting openings. Kinetic modeling showed that these resulted from stabilization of the channel to open and long-lived closed states, suggesting that a bulky and hydrophobic residue may lower the energy barrier for the switch between channel openings and closures. Thus, it is likely that the Phe168 acts as not only a steric hindrance gate but also potentially a facilitator of gating transitions in the Kir6.2 channel.  相似文献   

3.
In pancreatic β-cells, KATP channels consisting of Kir6.2 and SUR1 couple cell metabolism to membrane excitability and regulate insulin secretion. Sulfonylureas, insulin secretagogues used to treat type II diabetes, inhibit KATP channel activity primarily by abolishing the stimulatory effect of MgADP endowed by SUR1. In addition, sulfonylureas have been shown to function as pharmacological chaperones to correct channel biogenesis and trafficking defects. Recently, we reported that carbamazepine, an anticonvulsant known to inhibit voltage-gated sodium channels, has profound effects on KATP channels. Like sulfonylureas, carbamazepine corrects trafficking defects in channels bearing mutations in the first transmembrane domain of SUR1. Moreover, carbamazepine inhibits the activity of KATP channels such that rescued mutant channels are unable to open when the intracellular ATP/ADP ratio is lowered by metabolic inhibition. Here, we investigated the mechanism by which carbamazepine inhibits KATP channel activity. We show that carbamazepine specifically blocks channel response to MgADP. This gating effect resembles that of sulfonylureas. Our results reveal striking similarities between carbamazepine and sulfonylureas in their effects on KATP channel biogenesis and gating and suggest that the 2 classes of drugs may act via a converging mechanism.  相似文献   

4.
The adenosine triphosphate-sensitive K+ (KATP) channels are gated by several metabolites, whereas the gating mechanism remains unclear. Kir6.2, a pore-forming subunit of the KATP channels, has all machineries for ligand binding and channel gating. In Kir6.2, His175 is the protonation site and Thr71 and Cys166 are involved in channel gating. Here, we show how individual subunits act in proton binding and channel gating by selectively disrupting functional subunits using these residues. All homomeric dimers and tetramers showed pH sensitivity similar to the monomeric channels. Concatenated construction of wild type with disrupted subunits revealed that none of these residues had a dominant-negative effect on the proton-dependent channel gating. Subunit action in proton binding was almost identical to that for channel gating involving Cys166, suggesting a one-to-one coupling from the C terminus to the M2 helix. This was significantly different from the effect of T71Y heteromultimers, suggesting distinct contributions of M1 and M2 helices to channel gating. Subunits underwent concerted rather than independent action. Two wild-type subunits appeared to act as a functional dimer in both cis and trans configurations. The understanding of KATP channel gating by intracellular pH has a profound impact on cellular responses to metabolic stress as a significant drop in intracellular pH is more frequently seen under a number of physiological and pathophysiological conditions than a sole decrease in intracellular ATP levels. Runping Wang, Junda Su contributed equally to this work.  相似文献   

5.
Regulation of pancreatic KATP channels involves orchestrated interactions of their subunits, Kir6.2 and SUR1, and ligands. Previously we reported KATP channel cryo-EM structures in the presence and absence of pharmacological inhibitors and ATP, focusing on the mechanisms by which inhibitors act as pharmacological chaperones of KATP channels (Martin et al., 2019). Here we analyzed the same cryo-EM datasets with a focus on channel conformational dynamics to elucidate structural correlates pertinent to ligand interactions and channel gating. We found pharmacological inhibitors and ATP enrich a channel conformation in which the Kir6.2 cytoplasmic domain is closely associated with the transmembrane domain, while depleting one where the Kir6.2 cytoplasmic domain is extended away into the cytoplasm. This conformational change remodels a network of intra- and inter-subunit interactions as well as the ATP and PIP2 binding pockets. The structures resolved key contacts between the distal N-terminus of Kir6.2 and SUR1′s ABC module involving residues implicated in channel function and showed a SUR1 residue, K134, participates in PIP2 binding. Molecular dynamics simulations revealed two Kir6.2 residues, K39 and R54, that mediate both ATP and PIP2 binding, suggesting a mechanism for competitive gating by ATP and PIP2.  相似文献   

6.
The β cell KATP channel is an octameric complex of four pore-forming subunits (Kir6.2) and four regulatory subunits (SUR1). A truncated isoform of Kir6.2 (Kir6.2ΔC26), which expresses independently of SUR1, shows intrinsic ATP sensitivity, suggesting that this subunit is primarily responsible for mediating ATP inhibition. We show here that mutation of C166, which lies at the cytosolic end of the second transmembrane domain, to serine (C166S) increases the open probability of Kir6.2ΔC26 approximately sevenfold by reducing the time the channel spends in a long closed state. Rundown of channel activity is also decreased. Kir6.2ΔC26 containing the C166S mutation shows a markedly reduced ATP sensitivity: the K i is reduced from 175 μM to 2.8 mM. Substitution of threonine, alanine, methionine, or phenylalanine at position C166 also reduced the channel sensitivity to ATP and simultaneously increased the open probability. Thus, ATP does not act as an open channel blocker. The inhibitory effects of tolbutamide are reduced in channels composed of SUR1 and Kir6.2 carrying the C166S mutation. Our results are consistent with the idea that C166 plays a role in the intrinsic gating of the channel, possibly by influencing a gate located at the intracellular end of the pore. Kinetic analysis suggests that the apparent decrease in ATP sensitivity, and the changes in other properties, observed when C166 is mutated is largely a consequence of the impaired transition from the open to the long closed state.  相似文献   

7.
ATP-sensitive potassium (KATP) channels are reversibly inhibited by intracellular ATP. Agents that interact with sulfhydryl moieties produce an irreversible inhibition of KATP channel activity when applied to the intracellular membrane surface. ATP appears to protect against this effect, suggesting that the cysteine residue with which thiol reagents interact may either lie within the ATP-binding site or be inaccessible when the channel is closed. We have examined the interaction of the membrane-impermeant thiol-reactive agent p-chloromercuriphenylsulphonate (pCMPS) with the cloned β cell KATP channel. This channel comprises the pore-forming Kir6.2 and regulatory SUR1 subunits. We show that the cysteine residue involved in channel inhibition by pCMPS resides on the Kir6.2 subunit and is located at position 42, which lies within the NH2 terminus of the protein. Although ATP protects against the effects of pCMPS, the ATP sensitivity of the KATP channel was unchanged by mutation of C42 to either valine (V) or alanine (A), suggesting that ATP does not interact directly with this residue. These results are consistent with the idea that C42 is inaccessible to the intracellular solution, and thereby protected from interaction with pCMPS when the channel is closed by ATP. We also observed that the C42A mutation does not affect the ability of SUR1 to endow Kir6.2 with diazoxide sensitivity, and reduces, but does not prevent, the effects of MgADP and tolbutamide, which are mediated via SUR1. The Kir6.2-C42A (or V) mutant channel may provide a suitable background for cysteine-scanning mutagenesis studies.  相似文献   

8.
In pancreatic β-cells, KATP channels consisting of Kir6.2 and SUR1 couple cell metabolism to membrane excitability and regulate insulin secretion. Sulfonylureas, insulin secretagogues used to treat type II diabetes, inhibit KATP channel activity primarily by abolishing the stimulatory effect of MgADP endowed by SUR1. In addition, sulfonylureas have been shown to function as pharmacological chaperones to correct channel biogenesis and trafficking defects. Recently, we reported that carbamazepine, an anticonvulsant known to inhibit voltage-gated sodium channels, has profound effects on KATP channels. Like sulfonylureas, carbamazepine corrects trafficking defects in channels bearing mutations in the first transmembrane domain of SUR1. Moreover, carbamazepine inhibits the activity of KATP channels such that rescued mutant channels are unable to open when the intracellular ATP/ADP ratio is lowered by metabolic inhibition. Here, we investigated the mechanism by which carbamazepine inhibits KATP channel activity. We show that carbamazepine specifically blocks channel response to MgADP. This gating effect resembles that of sulfonylureas. Our results reveal striking similarities between carbamazepine and sulfonylureas in their effects on KATP channel biogenesis and gating and suggest that the 2 classes of drugs may act via a converging mechanism.  相似文献   

9.
The mechanism of adenosine triphosphate (ATP)-sensitive potassium (KATP) channel activation by Mg-nucleotides was studied using a mutation (G334D) in the Kir6.2 subunit of the channel that renders KATP channels insensitive to nucleotide inhibition and has no apparent effect on their gating. KATP channels carrying this mutation (Kir6.2-G334D/SUR1 channels) were activated by MgATP and MgADP with an EC50 of 112 and 8 µM, respectively. This activation was largely suppressed by mutation of the Walker A lysines in the nucleotide-binding domains of SUR1: the remaining small (∼10%), slowly developing component of MgATP activation was fully inhibited by the lipid kinase inhibitor LY294002. The EC50 for activation of Kir6.2-G334D/SUR1 currents by MgADP was lower than that for MgATP, and the time course of activation was faster. The poorly hydrolyzable analogue MgATPγS also activated Kir6.2-G334D/SUR1. AMPPCP both failed to activate Kir6.2-G334D/SUR1 and to prevent its activation by MgATP. Maximal stimulatory concentrations of MgATP (10 mM) and MgADP (1 mM) exerted identical effects on the single-channel kinetics: they dramatically elevated the open probability (PO > 0.8), increased the mean open time and the mean burst duration, reduced the frequency and number of interburst closed states, and eliminated the short burst states. By comparing our results with those obtained for wild-type KATP channels, we conclude that the MgADP sensitivity of the wild-type KATP channel can be described quantitatively by a combination of inhibition at Kir6.2 (measured for wild-type channels in the absence of Mg2+) and activation via SUR1 (determined for Kir6.2-G334D/SUR1 channels). However, this is not the case for the effects of MgATP.  相似文献   

10.
Pancreatic β-cells express ATP-sensitive potassium (KATP) channels, consisting of octamer complexes containing four sulfonylurea receptor 1 (SUR1) and four Kir6.2 subunits. Loss of KATP channel function causes persistent hyperinsulinemic hypoglycemia of infancy (PHHI), a rare but debilitating condition if not treated. We previously showed that the sodium-channel blocker carbamazepine (Carb) corrects KATP channel surface expression defects induced by PHHI-causing mutations in SUR1. In this study, we show that Carb treatment can also ameliorate the trafficking deficits associated with a recently discovered PHHI-causing mutation in Kir6.2 (Kir6.2-A28V). In human embryonic kidney 293 or INS-1 cells expressing this mutant KATP channel (SUR1 and Kir6.2-A28V), biotinylation and immunostaining assays revealed that Carb can increase surface expression of the mutant KATP channels. We further examined the subcellular distributions of mutant KATP channels before and after Carb treatment; without Carb treatment, we found that mutant KATP channels were aberrantly accumulated in the Golgi apparatus. However, after Carb treatment, coimmunoprecipitation of mutant KATP channels and Golgi marker GM130 was diminished, and KATP staining was also reduced in lysosomes. Intriguingly, Carb treatment also simultaneously increased autophagic flux and p62 accumulation, suggesting that autophagy-dependent degradation of the mutant channel was not only stimulated but also interrupted. In summary, our data suggest that surface expression of Kir6.2-A28V KATP channels is rescued by Carb treatment via promotion of mutant KATP channel exit from the Golgi apparatus and reduction of autophagy-mediated protein degradation.  相似文献   

11.
KATP channels are hetero-octameric complexes of four inward rectifying potassium channels, Kir6.1 or Kir6.2, and four sulfonylurea receptors, SUR1, SUR2A, or SUR2B from the ABC transporter family. This unique combination enables KATP channels to couple intracellular ATP/ADP ratios, through gating, with membrane excitability, thus regulating a broad range of cellular activities. The prominence of KATP channels in human physiology, disease, and pharmacology has long attracted research interest. Since 2017, a steady flow of high-resolution KATP cryoEM structures has revealed complex and dynamic interactions between channel subunits and their ligands. Here, we highlight insights from recent structures that begin to provide mechanistic explanations for decades of experimental data and discuss the remaining knowledge gaps in our understanding of KATP channel regulation.  相似文献   

12.
Co-expression of clones encoding Kir6.2, a K+ inward rectifier, and SUR1, a sulfonylurea receptor, reconstitutes elementary features of ATP-sensitive K+ (KATP) channels. However, the precise kinetic properties of Kir6.2/SUR1 clones remain unknown. Herein, intraburst kinetics of Kir6.2/SUR1 channel activity, heterologously co-expressed in COS cells, displayed mean closed times from 0.7 ± 0.1 to 0.4 ± 0.03 msec, and from 0.4 ± 0.1 to 2.0 ± 0.2 msec, and mean open times from 1.9 ± 0.4 to 4.5 ± 0.8 msec, and from 12.1 ± 2.4 to 5.0 ± 0.2 msec between −100 and −20 mV, and +20 to +80 mV, respectively. Burst duration for Kir6.2/SUR1 activity was 17.9 ± 1.8 msec with 5.6 ± 1.5 closings per burst. Burst kinetics of the Kir6.2/SUR1 activity could be fitted by a four-state kinetic model defining transitions between one open and three closed states with forward and backward rate constants of 1905 ± 77 and 322 ± 27 sec−1 for intraburst, 61.8 ± 6.6 and 23.9 ± 5.8 sec−1 for interburst, 12.4 ± 6.0 and 13.6 ± 2.9 sec−1 for intercluster events, respectively. Intraburst kinetic properties of Kir6.2/SUR1 clones were essentially indistinguishable from pancreatic or cardiac KATP channel phenotypes, indicating that intraburst kinetics per se were insufficient to classify recombinant Kir6.2/SUR1 amongst native KATP channels. Yet, burst kinetic behavior of Kir6.2/SUR1 although similar to pancreatic, was different from that of cardiac KATP channels. Thus, expression of Kir6.2/SUR1 proteins away from the pancreatic micro-environment, confers the burst kinetic identity of pancreatic, but not cardiac KATP channels. This study reports the kinetic properties of Kir6.2/SUR1 clones which could serve in the further characterization of novel KATP channel clones. Received: 12 March 1997/Revised: 5 May 1997  相似文献   

13.
Structurally unique among ion channels, ATP-sensitive K+ (KATP) channels are essential in coupling cellular metabolism with membrane excitability, and their activity can be reconstituted by coexpression of an inwardly rectifying K+ channel, Kir6.2, with an ATP-binding cassette protein, SUR1. To determine if constitutive channel subunits form a physical complex, we developed antibodies to specifically label and immunoprecipitate Kir6.2. From a mixture of Kir6.2 and SUR1 in vitro-translated proteins, and from COS cells transfected with both channel subunits, the Kir6.2-specific antibody coimmunoprecipitated 38- and 140-kDa proteins corresponding to Kir6.2 and SUR1, respectively. Since previous reports suggest that the carboxy-truncated Kir6.2 can form a channel independent of SUR, we deleted 114 nucleotides from the carboxy terminus of the Kir6.2 open reading frame (Kir6.2ΔC37). Kir6.2ΔC37 still coimmunoprecipitated with SUR1, suggesting that the distal carboxy terminus of Kir6.2 is unnecessary for subunit association. Confocal microscopic images of COS cells transfected with Kir6.2 or Kir6.2ΔC37 and labeled with fluorescent antibodies revealed unique honeycomb patterns unlike the diffuse immunostaining observed when cells were cotransfected with Kir6.2-SUR1 or Kir6.2ΔC37-SUR1. Membrane patches excised from COS cells cotransfected with Kir6.2-SUR1 or Kir6.2ΔC37-SUR1 exhibited single-channel activity characteristic of pancreatic KATP channels. Kir6.2ΔC37 alone formed functional channels with single-channel conductance and intraburst kinetic properties similar to those of Kir6.2-SUR1 or Kir6.2ΔC37-SUR1 but with reduced burst duration. This study provides direct evidence that an inwardly rectifying K+ channel and an ATP-binding cassette protein physically associate, which affects the cellular distribution and kinetic behavior of a KATP channel.  相似文献   

14.
Muscle form of lactate dehydrogenase (M-LDH) physically associate with KATP channel subunits, Kir6.2 and SUR2A, and is an integral part of the ATP-sensitive K+ (KATP) channel protein complex in the heart. Here, we have shown that concomitant introduction of viral constructs containing truncated and mutated forms of M-LDH (ΔM-LDH) and 193gly-M-LDH respectively, generate a phenotype of rat heart embryonic H9C2 cells that do not contain functional M-LDH as a part of the KATP channel protein complex. The K+ current was increased in wild type cells, but not in cells expressing ΔM-LDH/193gly-M-LDH, when they were exposed to chemical hypoxia induced by 2,4 dinitrophenol (DNP; 10 mM). At the same time, the outcome of chemical hypoxia was much worse in ΔM-LDH/193gly-M-LDH phenotype than in the control one, and that was associated with increased loss of intracellular ATP in cells infected with ΔM-LDH/193gly-M-LDH. On the other hand, cells expressing Kir6.2AFA, a Kir6.2 mutant that abolishes KATP channel conductance without affecting intracellular ATP levels, survived chemical hypoxia much better than cells expressing ΔM-LDH/193gly-M-LDH. Based on the obtained results, we conclude that M-LDH physically associated with Kir6.2/SUR2A regulates the activity of sarcolemmal KATP channels as well as an intracellular ATP production during metabolic stress, both of which are important for cell survival.  相似文献   

15.
Sulfonylureas, which stimulate insulin secretion from pancreatic β-cells, are widely used to treat both type 2 diabetes and neonatal diabetes. These drugs mediate their effects by binding to the sulfonylurea receptor subunit (SUR) of the ATP-sensitive K+ (KATP) channel and inducing channel closure. The mechanism of channel inhibition is unusually complex. First, sulfonylureas act as partial antagonists of channel activity, and second, their effect is modulated by MgADP. We analyzed the molecular basis of the interactions between the sulfonylurea gliclazide and Mg-nucleotides on β-cell and cardiac types of KATP channel (Kir6.2/SUR1 and Kir6.2/SUR2A, respectively) heterologously expressed in Xenopus laevis oocytes. The SUR2A-Y1206S mutation was used to confer gliclazide sensitivity on SUR2A. We found that both MgATP and MgADP increased gliclazide inhibition of Kir6.2/SUR1 channels and reduced inhibition of Kir6.2/SUR2A-Y1206S. The latter effect can be attributed to stabilization of the cardiac channel open state by Mg-nucleotides. Using a Kir6.2 mutation that renders the KATP channel insensitive to nucleotide inhibition (Kir6.2-G334D), we showed that gliclazide abolishes the stimulatory effects of MgADP and MgATP on β-cell KATP channels. Detailed analysis suggests that the drug both reduces nucleotide binding to SUR1 and impairs the efficacy with which nucleotide binding is translated into pore opening. Mutation of one (or both) of the Walker A lysines in the catalytic site of the nucleotide-binding domains of SUR1 may have a similar effect to gliclazide on MgADP binding and transduction, but it does not appear to impair MgATP binding. Our results have implications for the therapeutic use of sulfonylureas.  相似文献   

16.
The mechanism by which ATP-sensitive K+ (KATP) channels open in the presence of inhibitory concentrations of ATP remains unknown. Herein, using a four-state kinetic model, we found that the nucleotide diphosphate UDP directed cardiac KATP channels to operate within intraburst transitions. These transitions are not targeted by ATP, nor the structurally unrelated sulfonylurea glyburide, which inhibit channel opening by acting on interburst transitions. Therefore, the channel remained insensitive to ATP and glyburide in the presence of UDP. “Rundown” of channel activity decreased the efficacy with which UDP could direct and maintain the channel to operate within intraburst transitions. Under this condition, the channel was sensitive to inhibition by ATP and glyburide despite the presence of UDP. This behavior of the KATP channel could be accounted for by an allosteric model of ligand-channel interaction. Thus, the response of cardiac KATP channels towards inhibitory ligands is determined by the relative lifetime the channel spends in a ligand-sensitive versus -insensitive state. Interconversion between these two conformational states represents a novel basis for KATP channel opening in the presence of inhibitory concentrations of ATP in a cardiac cell.  相似文献   

17.
KATP channels consisting of Kir6.2 and SUR1 couple cell metabolism to membrane excitability and regulate insulin secretion. The molecular interactions between SUR1 and Kir6.2 that govern channel gating and biogenesis are incompletely understood. In a recent study, we showed that a SUR1 and Kir6.2 mutation pair, E203K-SUR1 and Q52E-Kir6.2, at the SUR1/Kir6.2 interface near the plasma membrane increases the ATP-sensitivity of the channel by nearly 100-fold. Here, we report the finding that the same mutation pair also suppresses channel folding/trafficking defects caused by select SUR1 mutations in the first transmembrane domain of SUR1. Analysis of the contributions from individual mutations, however, revealed that the correction effect is attributed largely to Q52E-Kir6.2 alone. Moreover, the correction is dependent on the negative charge of the substituting amino acid at the Q52 position in Kir6.2. Our study demonstrates for the first time that engineered mutations in Kir6.2 can correct the biogenesis defect caused by specific mutations in the SUR1 subunit.  相似文献   

18.
19.
The inwardly rectifying potassium channel Kir6.2 assembles with sulfonylurea receptor 1 to form the ATP-sensitive potassium (KATP) channels that regulate insulin secretion in pancreatic β-cells. Mutations in KATP channels underlie insulin secretion disease. Here, we report the characterization of a heterozygous missense Kir6.2 mutation, G156R, identified in congenital hyperinsulinism. Homomeric mutant channels reconstituted in COS cells show similar surface expression as wild-type channels but fail to conduct potassium currents. The mutated glycine is in the pore-lining transmembrane helix of Kir6.2; an equivalent glycine in other potassium channels has been proposed to serve as a hinge to allow helix bending during gating. We found that mutation of an adjacent asparagine, Asn-160, to aspartate, which converts the channel from a weak to a strong inward rectifier, on the G156R background restored ion conduction in the mutant channel. Unlike N160D channels, however, G156R/N160D channels are not blocked by intracellular polyamines at positive membrane potential and exhibit wild-type-like nucleotide sensitivities, suggesting the aspartate introduced at position 160 interacts with arginine at 156 to restore ion conduction and gating. Using tandem Kir6.2 tetramers containing G156R and/or N160D in designated positions, we show that one mutant subunit in the tetramer is insufficient to abolish conductance and that G156R and N160D can interact in the same or adjacent subunits to restore conduction. We conclude that the glycine at 156 is not essential for KATP channel gating and that the Kir6.2 gating defect caused by the G156R mutation could be rescued by manipulating chemical interactions between pore residues.  相似文献   

20.

Background

ATP-sensitive potassium (KATP) channels in neurons regulate excitability, neurotransmitter release and mediate protection from cell-death. Furthermore, activation of KATP channels is suppressed in DRG neurons after painful-like nerve injury. NO-dependent mechanisms modulate both KATP channels and participate in the pathophysiology and pharmacology of neuropathic pain. Therefore, we investigated NO modulation of KATP channels in control and axotomized DRG neurons.

Results

Cell-attached and cell-free recordings of KATP currents in large DRG neurons from control rats (sham surgery, SS) revealed activation of KATP channels by NO exogenously released by the NO donor SNAP, through decreased sensitivity to [ATP]i. This NO-induced KATP channel activation was not altered in ganglia from animals that demonstrated sustained hyperalgesia-type response to nociceptive stimulation following spinal nerve ligation. However, baseline opening of KATP channels and their activation induced by metabolic inhibition was suppressed by axotomy. Failure to block the NO-mediated amplification of KATP currents with specific inhibitors of sGC and PKG indicated that the classical sGC/cGMP/PKG signaling pathway was not involved in the activation by SNAP. NO-induced activation of KATP channels remained intact in cell-free patches, was reversed by DTT, a thiol-reducing agent, and prevented by NEM, a thiol-alkylating agent. Other findings indicated that the mechanisms by which NO activates KATP channels involve direct S-nitrosylation of cysteine residues in the SUR1 subunit. Specifically, current through recombinant wild-type SUR1/Kir6.2 channels expressed in COS7 cells was activated by NO, but channels formed only from truncated isoform Kir6.2 subunits without SUR1 subunits were insensitive to NO. Further, mutagenesis of SUR1 indicated that NO-induced KATP channel activation involves interaction of NO with residues in the NBD1 of the SUR1 subunit.

Conclusion

NO activates KATP channels in large DRG neurons via direct S-nitrosylation of cysteine residues in the SUR1 subunit. The capacity of NO to activate KATP channels via this mechanism remains intact even after spinal nerve ligation, thus providing opportunities for selective pharmacological enhancement of KATP current even after decrease of this current by painful-like nerve injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号