首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X Shen  Z He  H Li  C Yao  Y Zhang  L He  S Li  J Huang  Z Guo 《PloS one》2012,7(9):e44822

Background

Aberrant DNA methylation plays important roles in carcinogenesis. However, the functional significance of genome-wide hypermethylation and hypomethylation of gene promoters in carcinogenesis currently remain unclear.

Principal Findings

Based on genome-wide methylation data for five cancer types, we showed that genes with promoter hypermethylation were highly consistent in function across different cancer types, and so were genes with promoter hypomethylation. Functions related to “developmental processes” and “regulation of biology processes” were significantly enriched with hypermethylated genes but were depleted of hypomethylated genes. In contrast, functions related to “cell killing” and “response to stimulus”, including immune and inflammatory response, were associated with an enrichment of hypomethylated genes and depletion of hypermethylated genes. We also observed that some families of cytokines secreted by immune cells, such as IL10 family cytokines and chemokines, tended to be hypomethylated in various cancer types. These results provide new hints for understanding the distinct functional roles of genome-wide hypermethylation and hypomethylation of gene promoters in carcinogenesis.

Conclusions

Genes with promoter hypermethylation and hypomethylation are highly consistent in function across different cancer types, respectively, but these two groups of genes tend to be enriched in different functions associated with cancer. Especially, we speculate that hypomethylation of gene promoters may play roles in inducing immunity and inflammation disorders in precancerous conditions, which may provide hints for improving epigenetic therapy and immunotherapy of cancer.  相似文献   

2.
3.
Site-specific hypermethylation of tumor suppressor genes accompanied by genome-wide hypomethylation are epigenetic hallmarks of malignancy. However, the molecular mechanisms that drive these linked changes in DNA methylation remain obscure. DNA methyltransferase 1 (DNMT1), the principle enzyme responsible for maintaining methylation patterns is commonly dysregulated in tumors. Replication foci targeting sequence (RFTS) is an N-terminal domain of DNMT1 that inhibits DNA-binding and catalytic activity, suggesting that RFTS deletion would result in a gain of DNMT1 function. However, a substantial body of data suggested that RFTS is required for DNMT1 activity. Here, we demonstrate that deletion of RFTS alters DNMT1-dependent DNA methylation during malignant transformation. Compared to full-length DNMT1, ectopic expression of hyperactive DNMT1-ΔRFTS caused greater malignant transformation and enhanced promoter methylation with condensed chromatin structure that silenced DAPK and DUOX1 expression. Simultaneously, deletion of RFTS impaired DNMT1 chromatin association with pericentromeric Satellite 2 (SAT2) repeat sequences and produced DNA demethylation at SAT2 repeats and globally. To our knowledge, RFTS-deleted DNMT1 is the first single factor that can reprogram focal hypermethylation and global hypomethylation in parallel during malignant transformation. Our evidence suggests that the RFTS domain of DNMT1 is a target responsible for epigenetic changes in cancer.  相似文献   

4.
Tian  Qi  Zou  Jianxiao  Tang  Jianxiong  Fang  Yuan  Yu  Zhongli  Fan  Shicai 《BMC genomics》2019,20(2):1-10
Background

Determination of genome-wide DNA methylation is significant for both basic research and drug development. As a key epigenetic modification, this biochemical process can modulate gene expression to influence the cell differentiation which can possibly lead to cancer. Due to the involuted biochemical mechanism of DNA methylation, obtaining a precise prediction is a considerably tough challenge. Existing approaches have yielded good predictions, but the methods either need to combine plenty of features and prerequisites or deal with only hypermethylation and hypomethylation.

Results

In this paper, we propose a deep learning method for prediction of the genome-wide DNA methylation, in which the Methylation Regression is implemented by Convolutional Neural Networks (MRCNN). Through minimizing the continuous loss function, experiments show that our model is convergent and more precise than the state-of-art method (DeepCpG) according to results of the evaluation. MRCNN also achieves the discovery of de novo motifs by analysis of features from the training process.

Conclusions

Genome-wide DNA methylation could be evaluated based on the corresponding local DNA sequences of target CpG loci. With the autonomous learning pattern of deep learning, MRCNN enables accurate predictions of genome-wide DNA methylation status without predefined features and discovers some de novo methylation-related motifs that match known motifs by extracting sequence patterns.

  相似文献   

5.
Epigenetics describes the study of stable, reversible alterations to the genome that affect gene expression and genome function, the most studied mechanisms are DNA methylation and histone modifications. Over recent years there has been rapid progress to elucidate the nature and role of the mechanisms involved in promoter hypermethylation during carcinogenesis, however, the mechanism behind one of the earliest epigenetic observations in cancer, genome-wide hypomethylation, remains unclear. Current evidence is divided between the hypotheses that hypomethylation is either an important early cancer-causing aberration or that it is a passive inconsequential side effect of carcinogenesis. With recent discoveries of gene–body methylation, fast cyclic methylation of hormone dependent genes and candidate proteins involved in DNA demethylation elucidation of the role of hypomethylation and the mechanism behind it appears ever closer. With the burgeoning use of DNA methyltransferase inhibitors as a cancer therapy there is an increased need to understand the mechanisms and importance of genome-wide hypomethylation in cancer. This review will discuss the timing and potential causes of genomic hypomethylation during carcinogenesis and will propose a way forward to understand the underlying mechanisms.  相似文献   

6.
7.
8.
《Genomics》2021,113(6):3618-3634
Alterations in DNA methylation patterns are considered early events in hepatocellular carcinoma (HCC). However, their mechanism and significance remain to be elucidated. We studied the genome-wide DNA methylation landscape of HCC by applying whole-genome bisulfite sequencing (WGBS) techonlogy. Overall, HCC exhibits a genome-wide hypomethylation pattern. After further annotation, we obtained 590 differentially hypermethylated genes (hyper-DMGs) and 977 differentially hypomethylated genes (hypo-DMGs) from three groups. Hyper-DMGs were mainly involved in ascorbate and alternate metabolism pathways, while hypo-DMGs were mainly involved in focal adhesion. By integrating the DMGs with HCC-related differentially expressed genes (DEGs) and DMGs from the TCGA database, we constructed prognostic model based on thirteen aberrantly methylated DEGs, and verified our prognostic model in GSE14520 dataset. This study compares the patterns of global epigenomic DNA methylation during the development of HCC, focusing on the role of DNA methylation in the early occurrence and development of HCC, providing a direction for future research on its epigenetic mechanism.  相似文献   

9.
10.
11.
Epigenetic changes in virus-associated human cancers   总被引:6,自引:0,他引:6  
Li HP  Leu YW  Chang YS 《Cell research》2005,15(4):262-271
Epigenetics of human cancer becomes an area of emerging research direction due to a growing understanding of specific epigenetic pathways and rapid development of detection technologies. Aberrant promoter hypermethylation is a prevalent phenonmena in human cancers. Tumor suppressor genes are often hypermethylated due to the increased activity or deregulation of DNMTs. Increasing evidence also reveals that viral genes are one of the key players in regulating DNA methylation. In this review, we will focus on hypermethylation and tumor suppressor gene silencing and the signal pathways that are involved, particularly in cancers closely associated with the hepatitis B virus, simian virus 40 (SV40), and Epstein-Barr virus. In addition, we will discuss current technologies for genome-wide detection of epigenetically regulated targets, which allow for systematic DNA hypermethylation analysis. The study of epigenetic changes should provide a global view of gene profile in cancer, and epigenetic markers could be used for early detection, prognosis, and therapy of cancer.  相似文献   

12.
Cancers of the upper aerodigestive tract (UADT) are common forms of malignancy associated with tobacco and alcohol exposures, although human papillomavirus and nutritional deficiency are also important risk factors. While somatically acquired DNA methylation changes have been associated with UADT cancers, what triggers these events and precise epigenetic targets are poorly understood. In this study, we applied quantitative profiling of DNA methylation states in a panel of cancer-associated genes to a case-control study of UADT cancers. Our analyses revealed a high frequency of aberrant hypermethylation of several genes, including MYOD1, CHRNA3 and MTHFR in UADT tumors, whereas CDKN2A was moderately hypermethylated. Among differentially methylated genes, we identified a new gene (the nicotinic acetycholine receptor gene) as target of aberrant hypermethylation in UADT cancers, suggesting that epigenetic deregulation of nicotinic acetycholine receptors in non-neuronal tissues may promote the development of UADT cancers. Importantly, we found that sex and age is strongly associated with the methylation states, whereas tobacco smoking and alcohol intake may also influence the methylation levels in specific genes. This study identifies aberrant DNA methylation patterns in UADT cancers and suggests a potential mechanism by which environmental factors may deregulate key cellular genes involved in tumor suppression and contribute to UADT cancers.Key words: DNA methylation, upper aerodigestive tract, cancer, risk factors, biomarkers  相似文献   

13.
Ectopic hypermethylation of flower-specific genes in Arabidopsis   总被引:10,自引:0,他引:10  
BACKGROUND: Arabidopsis mutations causing genome-wide hypomethylation are viable but display a number of specific developmental abnormalities, including some that resemble known floral homeotic mutations. We previously showed that one of the developmental abnormalities present in an antisense-METHYLTRANSFERASEI (METI) transgenic line resulted from ectopic hypermethylation of the SUPERMAN gene. RESULTS: Here, we investigate the extent to which hypermethylation of SUPERMAN occurs in several hypomethylation mutants, and describe methylation effects at a second gene, AGAMOUS. SUPERMAN gene hypermethylation occurred at a high frequency in several mutants that cause overall decreases in genomic DNA methylation. The hypermethylation pattern was largely similar in the different mutant backgrounds. Genetic analysis suggests that hypermethylation most likely arose either during meiosis or somatically in small sectors of the plant. A second floral development gene, AGAMOUS, also became hypermethylated and silenced in an Arabidopsis antisense-METI line. CONCLUSIONS: These results suggest that ectopic hypermethylation of specific genes in mutant backgrounds that show overall decreases in methylation may be a widespread phenomenon that could explain many of the developmental defects seen in Arabidopsis methylation mutants. This resembles a phenomenon seen in cancer cells, which can simultaneously show genome-wide hypomethylation and hypermethylation of specific genes. Comparison of the methylated sequences in SUPERMAN and AGAMOUS suggests that hypermethylation could involve DNA secondary structures formed by pyrimidine-rich sequences.  相似文献   

14.
In recent years it has become apparent that epigenetic events are potentially equally responsible for cancer initiation and progression as genetic abnormalities. DNA methylation is the main epigenetic modification in humans. Two DNA methylation lesions coexist in human neoplasms: hypermethylation of promoter regions of specific genes within a context of genomic hypomethylation. Aberrant methylation is found at early stages of carcinogenesis and distinct types of cancer exhibit specific patterns of methylation changes. Tumor specific DNA is readily obtainable from different clinical samples and methylation status analysis often permits sensitive disease detection. Methylation markers may also serve for prognostic and predictive purposes as they often reflect the metastatic potential and sensitivity to therapy. As current findings show a great potential of recently characterised methylation markers, more studies in the field are needed in the future. Large clinical studies of newly developed markers are especially needed. The review describes the diagnostic potential of DNA methylation markers.  相似文献   

15.
BackgroundAging and sun exposure are the leading causes of skin cancer. It has been shown that epigenetic changes, such as DNA methylation, are well established mechanisms for cancer, and also have emerging roles in aging and common disease. Here, we directly ask whether DNA methylation is altered following skin aging and/or chronic sun exposure in humans.ResultsWe compare epidermis and dermis of both sun-protected and sun-exposed skin derived from younger subjects (under 35 years old) and older subjects (over 60 years old), using the Infinium HumanMethylation450 array and whole genome bisulfite sequencing. We observe large blocks of the genome that are hypomethylated in older, sun-exposed epidermal samples, with the degree of hypomethylation associated with clinical measures of photo-aging. We replicate these findings using whole genome bisulfite sequencing, comparing epidermis from an additional set of younger and older subjects. These blocks largely overlap known hypomethylated blocks in colon cancer and we observe that these same regions are similarly hypomethylated in squamous cell carcinoma samples.ConclusionsThese data implicate large scale epigenomic change in mediating the effects of environmental damage with photo-aging.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0644-y) contains supplementary material, which is available to authorized users.  相似文献   

16.
The epigenetic landscape of cancer includes both focal hypermethylation and broader hypomethylation in a genome-wide manner. By means of a comprehensive genomic analysis on 6637 tissues of 21 tumor types, we here show that the degrees of overall methylation in CpG island (CGI) and demethylation in intergenic regions, defined as ‘backbone’, largely vary among different tumors. Depending on tumor type, both CGI methylation and backbone demethylation are often associated with clinical, epidemiological and biological features such as age, sex, smoking history, anatomic location, histological type and grade, stage, molecular subtype and biological pathways. We found connections between CGI methylation and hypermutability, microsatellite instability, IDH1 mutation, 19p gain and polycomb features, and backbone demethylation with chromosomal instability, NSD1 and TP53 mutations, 5q and 19p loss and long repressive domains. These broad epigenetic patterns add a new dimension to our understanding of tumor biology and its clinical implications.  相似文献   

17.
18.
The Controversial Denouement of Vertebrate DNA Methylation Research   总被引:9,自引:0,他引:9  
The study of the biological role of DNA methylation in vertebrates has involved considerable controversy. Research in this area has proceeded well despite the complexity of the subject and the difficulties in establishing biological roles, some of which are summarized in this review. Now there is justifiably much more interest in DNA methylation than previously, and many more laboratories are engaged in this research. The results of numerous studies indicate that some tissue-specific differences in vertebrate DNA methylation help maintain patterns of gene expression or are involved in fine-tuning or establishing expression patterns. Therefore, vertebrate DNA methylation cannot just be assigned a role in silencing transposable elements and foreign DNA sequences, as has been suggested. DNA methylation is clearly implicated in modulating X chromosome inactivation and in establishing genetic imprinting. Also, hypermethylation of CpG-rich promoters of tumor suppressor genes in cancer has a critical role in downregulating expression of these genes and thus participating in carcinogenesis. The complex nature of DNA methylation patterns extends to carcinogenesis because global DNA hypomethylation is found in the same cancers displaying hypermethylation elsewhere in the genome. A wide variety of cancers display both DNA hypomethylation and hypermethylation, and either of these types of changes can be significantly associated with tumor progression. These findings and the independence of cancer-linked DNA hypomethylation from cancer-linked hypermethylation strongly implicate DNA hypomethylation, as well as hypermethylation, in promoting carcinogenesis. Furthermore, various DNA demethylation methodologies have been shown to increase the formation of certain types of cancers in animals, and paradoxically, DNA hypermethylation can cause carcinogenesis in other model systems. Therefore, there is a need for caution in the current use of demethylating agents as anti-cancer drugs. Nonetheless, DNA demethylation therapy clearly may be very useful in cases where better alternatives do not exist.  相似文献   

19.
Neuroblastoma (NB) pathogenesis has been reported to be closely associated with numerous genetic alterations. However, underlying DNA methylation patterns have not been extensively studied in this developmental malignancy. Here, we generated microarray-based DNA methylation profiles of primary neuroblastic tumors. Stringent supervised differential methylation analyses allowed us to identify epigenetic changes characteristic for NB tumors as well as for clinical and biological subtypes of NB. We observed that gene-specific loss of DNA methylation is more prevalent than promoter hypermethylation. Remarkably, such hypomethylation affected cancer-related biological functions and genes relevant to NB pathogenesis such as CCND1, SPRR3, BTC, EGF and FGF6. In particular, differential methylation in CCND1 affected mostly an evolutionary conserved functionally relevant 3′ untranslated region, suggesting that hypomethylation outside promoter regions may play a role in NB pathogenesis. Hypermethylation targeted genes involved in cell development and proliferation such as RASSF1A, POU2F2 or HOXD3, among others. The results derived from this study provide new candidate epigenetic biomarkers associated with NB as well as insights into the molecular pathogenesis of this tumor, which involves a marked gene-specific hypomethylation.  相似文献   

20.
Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer. Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypomethylation scenario, have also been recently reported. Although many of these observations arise from the use of mouse models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease. However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation bisulfite sequencing to profile the brain methylomes of young and old, tumoral and nontumoral brain samples from human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and epigenomic context associated with the alterations, and finally, we integrated our data to study interspecies DNA methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point toward the preservation of the functional consequences of these alterations at multiple levels of genomic regulation. Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号