首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Lipopolysaccharide (LPS) is a bacterially-derived endotoxin that elicits a strong proinflammatory response in intestinal epithelial cells. It is well established that LPS activates this response through NF-κB. In addition, LPS signals through the mitogen-activated protein kinase (MAPK) pathway. We previously demonstrated that the Krüppel-like factor 5 [KLF5; also known as intestine-enriched Krüppel-like factor (IKLF)] is activated by the MAPK. In the current study, we examined whether KLF5 mediates the signaling cascade elicited by LPS. Treatment of the intestinal epithelial cell line, IEC6, with LPS resulted in a dose- and time-dependent increase in KLF5 messenger RNA (mRNA) and protein levels. Concurrently, mRNA levels of the p50 and p65 subunits of NF-κB were increased by LPS treatment. Pretreatment with the MAPK inhibitor, U0126, or the LPS antagonist, polymyxin B, resulted in an attenuation of KLF5, p50 and p65 NF-κB subunit mRNA levels from LPS treatment. Importantly, suppression of KLF5 by small interfering RNA (siRNA) resulted in a reduction in p50 and p65 subunit mRNA levels and NF-κB DNA binding activity in response to LPS. LPS treatment also led to an increase in secretion of TNF-α and IL-6 from IEC6, both of which were reduced by siRNA inhibition of KLF5. In addition, intercellular adhesion molecule-1 (ICAM-1) levels were increased in LPS-treated IEC6 cells and this increase was associated with increased adhesion of Jurkat lymphocytes to IEC6. The induction of ICAM-1 expression and T cell adhesion to IEC6 by LPS were both abrogated by siRNA inhibition of KLF5. These results indicate that KLF5 is an important mediator for the proinflammatory response elicited by LPS in intestinal epithelial cells.  相似文献   

5.
Histone deacetylase inhibitors (HDACI) are potential therapeutic agents that inhibit tumor cell growth and survival. Although there are several publications regarding the effects of HDACIs on prostate cancer cell growth, their mechanism(s) of action remains undefined. We treated several human prostate cancer cell lines with the HDACI trichostatin A and found that trichostatin A induced cell death in androgen receptor (AR)-positive cell lines to higher extent compared with AR-negative cell lines. We then discovered that trichostatin A and other HDACIs suppressed AR gene expression in prostate cancer cell lines as well as in AR-positive breast carcinoma cells and in mouse prostate. Trichostatin A also induced caspase activation, but trichostatin A-induced AR suppression and cell death were caspase independent. In addition, we found that doxorubicin inhibited AR expression, and p21 protein completely disappeared after simultaneous treatment with trichostatin A and doxorubicin. This effect may be attributed to the induction of protease activity under simultaneous treatment with these two agents. Further, simultaneous treatment with trichostatin A and doxorubicin increased cell death in AR-positive cells even after culturing in steroid-free conditions. The protease/proteasome inhibitor MG132 protected AR and p21 from the effects of trichostatin A and doxorubicin and inhibited trichostatin A-induced cell death in AR-positive prostate cells. Taken together, our data suggest that the main mechanism of trichostatin A-induced cell death in AR-positive prostate cancer is inhibition of AR gene expression. The synergistic effect of simultaneous treatment with trichostatin A and doxorubicin is mediated via inhibition of AR expression, induction of protease activity, increased expression of p53, and proteolysis of p21.  相似文献   

6.
7.
p27(Kip1) is an inducer of intestinal epithelial cell differentiation   总被引:2,自引:0,他引:2  
Constant renewal of the intestinal epitheliumis a highly coordinated process that has been subject to intenseinvestigation, but its regulatory mechanisms are still essentiallyunknown. In this study, we have demonstrated that forced expression ofthe cyclin-dependent kinase inhibitors (CKIs) p27Kip1 andp21Cip1/WAF1 in human intestinal epithelial cells led toexpression of differentiation markers at both the mRNA and proteinlevels. Cell differentiation was temporally dissociated from inhibitionof retinoblastoma protein phosphorylation and growth arrest, alreadyestablished 1 day after infection with recombinant adenoviruses.p27Kip1 proved significantly more efficient thanp21Cip1/WAF1 in induction of cell differentiation. Incontrast, forced expression of p16INK4a resulted in growtharrest without induction of differentiation markers. These resultsimplicate both p27Kip1 and p21Cip1/WAF1 in thedifferentiation-timing process, but p21Cip1/WAF1 may actindirectly by increasing p27Kip1 levels. These results alsosuggest that induction of intestinal epithelial cell differentiation byCKIs is not related to their effects on the cell cycle and may involveinteractions with cellular components other than cyclins andcyclin-dependent kinases.

  相似文献   

8.
delta-Lactam-based hydroxamic acids, inhibitors of histone deacetylase (HDAC), have been synthesized via ring closure metathesis of key diene intermediates followed by conversion to hydroxamic acid analogues. The hydroxamic acids 12a, 12b, and 17c showed potent inhibitory activity in HDAC enzyme assay. The hydroxamic acid 12b exhibited growth inhibitory activity on five human tumor cell lines, showing good sensitivity on the MDA-MB-231 breast tumor cell.  相似文献   

9.
The constitutively active Bcr‐Abl tyrosine kinase plays a crucial role in chronic myelogenous leukemia (CML) pathogenesis. The Bcr‐Abl protein induces the upregulation of proto‐oncogene c‐Jun, which is involved in Bcr‐Abl transforming activity in Bcr‐Abl positive cells. Recent studies reported that c‐Jun inhibited hemoglobin synthesis in human CML cell line K562. However, c‐Jun also plays a critical role in cell proliferation and apoptosis. In this study, we investigated the physiological roles of c‐Jun in cell proliferation, apoptosis and erythroid differentiation of K562 cells. Firstly, we generated K562 cell lines stably overexpressing c‐Jun. These clones have the same proliferation rate as the parental cell line in general culture medium. Endogenous c‐Jun expression was analyzed to determine the effective concentration of STI571 for inhibiting Bcr‐Abl signaling. Western blots show that STI571 inhibited c‐Jun expression in a dose‐dependent manner, reaching a maximum inhibition at 1 µM. STI571 could inhibit c‐Jun expression in K562 cells, but not in c‐Jun‐overexpression cells. c‐Jun did not alter growth inhibition and apoptotic induction by STI571 treatment, but inhibited STI571‐induced erythroid differentiation. Moreover, c‐Jun did not alter growth inhibition and apoptotic induction by histone deacetylase (HDAC) inhibitors (apicidin, sodium butyrate, and MS275) treatment, but inhibited HDAC inhibitors‐induced erythroid differentiation. These results suggest that c‐Jun may modulate anticancer drugs‐induced cell differentiation but not growth inhibition and apoptosis in CML cells. J. Cell. Physiol. 218: 568–574, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

10.
Abstract. The A6 antigen - a surface-exposed component shared by mouse oval and biliary epithelial cells - was examined during prenatal development of mouse in order to elucidate its relation to liver progenitor cells. Immunohistochemical demonstration of the antigen was performed at the light and electron microscopy level beginning from the 9.5 day of gestation (26–28 somite pairs).
Up to the 11.5 day of gestation A6 antigen is found only in the visceral endoderm of yolk sac and gut epithelium, while liver diverticulum and liver are A6-negative. In the liver epithelial lineages A6 antigen behaves as a strong and reliable marker of biliary epithelial cells where it is found beginning from their emergence on the 15th day of gestation. It was not revealed in immature hepato-cytes beginning from the 16th day of gestation. However weak expression of the antigen was observed in hepato-blasts on 12–15 days of gestation possibly reflecting their ability to differentiate along either hepatocyte or biliary epithelial cell lineages.
Surprisingly, A6 antigen turned out to be a peculiar marker of the crythroid lineage: in mouse fetuses it distinguished A6 positive liver and spleen erythroblasts from A6 negative early hemopoietic cells of yolk sac origin. Moreover in the liver, A6 antigen probably distinguishes two waves of erythropoiesis: it is found on the erythroblasts from the 11.5 day of gestation onward while first extravascular erythroblasts appear in the liver on the 10th day of gestation. Both fetal and adult erythrocytes are A6-negative.
In the process of organogenesis A6 antigen was revealed in various mouse fetal organs. Usually it was found on plasma membranes of mucosal or ductular epithelial cells. Investigation of A6 antigen's physiological function would probably explain such specific localization.  相似文献   

11.
12.
BCL-2 modifying factor (BMF) is a sentinel considered to register damage at the cytoskeleton and to convey a death signal to B-cell lymphoma 2. B-cell lymphoma 2 is neutralized by BMF and thereby facilitates cytochrome C release from mitochondria. We investigated the role of BMF for intestinal epithelial cell (IEC) homeostasis. Acute colitis was induced in Bmf-deficient mice (Bmf(-/-)) with dextran sulfate sodium. Colonic crypt length in Bmf(-/-) mice was significantly increased as compared with WT mice. Dextran sulfate sodium induced less signs of colitis in Bmf(-/-) mice, as weight loss was reduced compared with the WT. Primary human IEC exhibited increased BMF in the extrusion zone. Quantitative PCR showed a significant up-regulation of BMF expression after initiation of anoikis in primary human IEC. BMF was found on mitochondria during anoikis, as demonstrated by Western blot analysis. RNAi mediated knockdown of BMF reduced the number of apoptotic cells and led to reduced caspase 3 activity. A significant increase in phospho-AKT was determined after RNAi treatment. BMF knockdown supports survival of IEC. BMF is induced in human IEC by the loss of cell attachment and is likely to play an important role in the regulation of IEC survival.  相似文献   

13.
14.
15.
Chan MW  Chan VY  Leung WK  Chan KK  To KF  Sung JJ  Chan FK 《Life sciences》2005,76(22):2581-2592
Intestinal trefoil factor (ITF), which is normally absent in gastric mucosa, is over-expressed in gastric cancer. However, the functional significance of ITF in gastric cancer is unknown. We examined the effects of blocking ITF expression on the growth of gastric cancer cells and their responses to chemotherapeutic agents. Anti-sense ITF cDNA was cloned into mammalian expression vector pcDNA3 and was transfected into an ITF-expressing gastric cancer cell line SNU-1. We assessed the doubling time and anchorage dependent growth of the transfected cells using growth curve and soft agar assay respectively. Cell cycle analysis and apoptosis were determined by flow cytometry and cell death ELISA. The response to chemotherapeutic agents after transfecting anti-sense ITF was also examined. Anti-sense ITF transfectant (3A-5) had a significantly longer doubling time as compared to control cells which were transfected with empty vector (32.4 hr vs 26.9 hr, p < 0.05). In the soft agar assay, 3A-5 formed fewer colonies than control (3.5 colonies vs 23.5 colonies, p < 0.05). Although there was no significant difference in the cell cycle distribution between 3A-5 and control, anti-sense ITF resulted in marked increase in adriamycin-induced apoptosis. Our results demonstrated that blocking the expression of ITF inhibits growth of gastric cancer cells and enhances the response to chemotherapy.  相似文献   

16.
We have previously demonstrated that insulin-like growth factor binding protein-5 (IGFBP-5) is upregulated following treatment of the mouse mammary epithelial cell line HC11 with lactogenic hormones (dexamethasone, insulin, and prolactin-DIP). In addition, we have also shown that IGFBP-5 is upregulated in mammary epithelial cells in vivo during involution of the rodent mammary gland. We have, therefore, postulated that there may be a dual regulation of IGFBP-5 expression during the temporally separated processes of differentiation and apoptosis of mammary epithelial cells. To test this hypothesis further, we have used a phenotypically differentiated model, which comprises primary cultures of mouse mammary epithelial cells grown on a layer of EHS (Engelbreth-Holm-Swarm) extracellular matrix. We show that lactogenic hormone treatment (hydrocortisone, insulin, and prolactin-HIP) of these cultures induces the upregulation of IGFBP-5 thus replicating the results obtained with the HC11 cell line. In addition, following the induction of apoptosis in primary cultures of mammary epithelial cells by treatment with TGFbeta-3, IGFBP-5 expression is also upregulated. In parallel with this upregulation of IGFBP-5, there is also an increase in the levels of cleaved caspase-3, a well-characterized marker of cellular apoptosis. These findings confirm previous in vivo work demonstrating an increase in IGFBP-5 expression during involution of the mouse mammary gland. When HC11 cells are cultured under serum-free conditions (a well-characterized apoptotic insult in cell culture), there is also an increase in cleaved caspase-3 levels. Unexpectedly, in the presence of TGFbeta-3, caspase-3 levels are attenuated. In the presence of DIP, caspase-3 levels are also decreased in HC11 cells. As described previously, TGFbeta-3 inhibits beta-casein synthesis in HC11 cells. In the HC11 cell line (in contrast to primary cultures of mammary epithelial cells), there is no evidence for TGFbeta-3 induction of IGFBP-5 under either serum-free or DIP-supplemented conditions. We believe our data with primary cultures of mammary epithelial cells support the hypothesis of dual regulation of IGFBP-5 expression during both differentiation and apoptosis in the mammary gland and emphasizes the importance of using appropriate cell culture models to investigate such phenomena in this tissue. We discuss the possible implications of our observations in relation to the physiological processes of pregnancy, lactation, and involution in the mammary gland and the associated changes in mammary epithelial cell function.  相似文献   

17.
18.
IL-6, which is also known as IFN-beta 2, hybridoma growth factor, hepatocyte-stimulating factor, and B cell differentiation factor, mediates acute phase responses including fever, has lymphocyte-stimulating capacities, and antiviral activity. IL-6 is produced by monocytes, fibroblasts, certain lymphocytes, and various tumor cells. The present study demonstrates that this multifunctional cytokine is released also by normal human epidermal cells (EC) and human epidermoid carcinoma cell lines (A431, KB). Accordingly, supernatants derived from freshly isolated EC, long term keratinocyte cultures, A431, or KB cells stimulated the proliferation of a hybridoma growth factor/IL-6-dependent plasmacytoma cell line (B9). IL-6 constitutively was produced in the presence of serum proteins. The addition of IL-1 alpha, IL-1 beta, or the tumor promoter PMA significantly enhanced the synthesis and release of EC-derived IL-6 (EC-IL 6). Like monocyte or fibroblast-derived IL-6, EC-IL-6 exhibited Mr microheterogeneity within 21 and 28 kDa. Similarly in Western blotting experiments an antiserum directed against human rIFN-beta 2/IL-6 detected the different Mr forms of EC-IL-6. Moreover, this antiserum was able to block the B9 cell growth-promoting capacity of EC-IL-6 strongly suggesting that this EC-derived mediator is closely related, if not identical with IL-6. This was further confirmed by Northern blot analysis detecting IL-6 specific mRNA both in long term cultured keratinocytes and A431 cells by hybridization with a cDNA fragment encoding for B cell differentiating factor 2/IL-6. Therefore, in addition to the production of other cytokines as previously reported, EC and in particular keratinocytes also synthesize and release IL-6. This further supports the important regulatory role of the epidermis during the pathogenesis of inflammatory, autoimmune, and neoplastic diseases.  相似文献   

19.
Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level of MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression.  相似文献   

20.
Novel 1,5-diphenyl-6-substituted-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-ones were synthesized and characterized. All compounds were screened for their anti-proliferative activities in five different cancer cell lines. The results showed that compounds 7a and 7b comprising aminoguanidino or guanidino moiety at position 6 inhibited proliferation of RKO colon cancer cells with IC50 of 8 and 4?μM, respectively. Compounds 7a and 7b induced apoptosis in RKO cells, which was confirmed by TUNEL and annexin V-FITC assays. Flow cytometric analysis indicated that compounds 7a and 7b arrested RKO cells in the G1 phase and the most active compound 7b increased levels of p53, p21, Bax, ERK1/2 and reduced levels of Bcl2 and Akt. Compound 7b also activates release of cytochrome c, which is consistent with activation of caspase-9. Additionally, compound 7b increased caspase-3 activity and cleaved PARP-1 in RKO cells. Collectively, these findings could establish a molecular basis for the development of new anti-cancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号