首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primases synthesize the RNA primers that are necessary for replication of the parental DNA strands. Here we report that the heterodimeric archaeal/eukaryotic primase is an iron-sulfur (Fe-S) protein. Binding of the Fe-S cluster is mediated by an evolutionarily conserved domain at the C terminus of the large subunit. We further show that the Fe-S domain is essential to the unique ability of the eukaryotic primase to start DNA replication.  相似文献   

2.
3.

Background

DNA synthesis during replication relies on RNA primers synthesised by the primase, a specialised DNA-dependent RNA polymerase that can initiate nucleic acid synthesis de novo. In archaeal and eukaryotic organisms, the primase is a heterodimeric enzyme resulting from the constitutive association of a small (PriS) and large (PriL) subunit. The ability of the primase to initiate synthesis of an RNA primer depends on a conserved Fe-S domain at the C-terminus of PriL (PriL-CTD). However, the critical role of the PriL-CTD in the catalytic mechanism of initiation is not understood.

Methodology/Principal Findings

Here we report the crystal structure of the yeast PriL-CTD at 1.55 Å resolution. The structure reveals that the PriL-CTD folds in two largely independent alpha-helical domains joined at their interface by a [4Fe-4S] cluster. The larger N-terminal domain represents the most conserved portion of the PriL-CTD, whereas the smaller C-terminal domain is largely absent in archaeal PriL. Unexpectedly, the N-terminal domain reveals a striking structural similarity with the active site region of the DNA photolyase/cryptochrome family of flavoproteins. The region of similarity includes PriL-CTD residues that are known to be essential for initiation of RNA primer synthesis by the primase.

Conclusion/Significance

Our study reports the first crystallographic model of the conserved Fe-S domain of the archaeal/eukaryotic primase. The structural comparison with a cryptochrome protein bound to flavin adenine dinucleotide and single-stranded DNA provides important insight into the mechanism of RNA primer synthesis by the primase.  相似文献   

4.
DNA replication in all organisms requires polymerases to synthesize copies of the genome. DNA polymerases are unable to function on a bare template and require a primer. Primases are crucial RNA polymerases that perform the initial de novo synthesis, generating the first 8–10 nucleotides of the primer. Although structures of archaeal and bacterial primases have provided insights into general priming mechanisms, these proteins are not well conserved with heterodimeric (p48/p58) primases in eukaryotes. Here, we present X-ray crystal structures of the catalytic engine of a eukaryotic primase, which is contained in the p48 subunit. The structures of p48 reveal that eukaryotic primases maintain the conserved catalytic prim fold domain, but with a unique subdomain not found in the archaeal and bacterial primases. Calorimetry experiments reveal that Mn2 + but not Mg2 + significantly enhances the binding of nucleotide to primase, which correlates with higher catalytic efficiency in vitro. The structure of p48 with bound UTP and Mn2 + provides insights into the mechanism of nucleotide synthesis by primase. Substitution of conserved residues involved in either metal or nucleotide binding alter nucleotide binding affinities, and yeast strains containing the corresponding Pri1p substitutions are not viable. Our results reveal that two residues (S160 and H166) in direct contact with the nucleotide were previously unrecognized as critical to the human primase active site. Comparing p48 structures to those of similar polymerases in different states of action suggests changes that would be required to attain a catalytically competent conformation capable of initiating dinucleotide synthesis.  相似文献   

5.
Primases are essential components of the DNA replication apparatus in every organism. They catalyze the synthesis of oligoribonucleotides on single-stranded DNA, which subsequently serve as primers for the replicative DNA polymerases. In contrast to bacterial primases, the archaeal enzymes are closely related to their eukaryotic counterparts. We have solved the crystal structure of the catalytic primase subunit from the hyperthermophilic archaeon Pyrococcus furiosus at 2.3 A resolution by multiwavelength anomalous dispersion methods. The structure shows a two-domain arrangement with a novel zinc knuckle motif located in the primase (prim) domain. In this first structure of a complete protein of the archaeal/eukaryotic primase family, the arrangement of the catalytically active residues resembles the active sites of various DNA polymerases that are unrelated in fold.  相似文献   

6.
We report on the characterization of the DNA primase complex of the hyperthermophilic archaeon Pyrococcus abyssi (Pab). The Pab DNA primase complex is composed of the proteins Pabp41 and Pabp46, which show sequence similarities to the p49 and p58 subunits, respectively, of the eukaryotic polymerase α–primase complex. Both subunits were expressed, purified, and characterized. The Pabp41 subunit alone had no RNA synthesis activity but could synthesize long (up to 3 kb) DNA strands. Addition of the Pabp46 subunit increased the rate of DNA synthesis but decreased the length of the DNA fragments synthesized and conferred RNA synthesis capability. Moreover, in our experimental conditions, Pab DNA primase had comparable affinities for ribonucleotides and deoxyribonucleotides, and its activity was dependent on the presence of Mg2+ and Mn2+. Interestingly, Pab DNA primase also displayed DNA polymerase, gap-filling, and strand-displacement activities. Genetic analyses undertaken in Haloferax volcanii suggested that the eukaryotic-type heterodimeric primase is essential for survival in archaeal cells. Our results are in favor of a multifunctional archaeal primase involved in priming and repair.  相似文献   

7.
Zerbe LK  Kuchta RD 《Biochemistry》2002,41(15):4891-4900
The p58 subunit of human DNA primase contains a region, M288-K344, that is homologous to part of the 8 kDa domain of DNA polymerase beta. Since regions of a protein that are highly conserved evolutionarily often play important catalytic functions, we examined the effects of mutating this region of the p58 subunit on primase activity. Deleting M288-L313 of the p58 subunit results in a protein that binds to the primase p49 subunit but cannot support primer synthesis on any template when assays only contain Mg(2+) as the divalent metal. Including Mn(2+), a metal that stimulates initiation of primer synthesis, in the assays now allows the enzyme to synthesize primers at a rate only moderately lower than that of the wild-type enzyme on templates consisting solely of deoxycytidylates. While the enzyme is active under these conditions, it has lost the ability to synthesize primers of defined length (i.e., count). Alanine scanning mutagenesis of charged residues in this region revealed three amino acids, R302, R306, and K314, that play important roles in both primer initiation and translocation. Conversion of these residues to alanine interfered with initiation and significantly decreased the processivity of primase. Together, these studies indicate that this "pol beta-like" region of p58 is important for three distinct aspects of primer synthesis:; initiation, translocation, and counting. The implications of these results with respect to the biological role of the p58 subunit and the mechanism of primer synthesis are discussed.  相似文献   

8.
In the evolution of life, DNA replication is a fundamental process, by which species transfer their genetic information to their offspring. DNA polymerases, including bacterial and eukaryotic replicases, are incapable of de novo DNA synthesis. DNA primases are required for this function, which is sine qua non to DNA replication. In Escherichia coli, the DNA primase (DnaG) exists as a monomer and synthesizes a short RNA primer. In Eukarya, however, the primase activity resides within the DNA polymerase alpha-primase complex (Pol alpha-pri) on the p48 subunit, which synthesizes the short RNA segment of a hybrid RNA-DNA primer. To date, very little information is available regarding the priming of DNA replication in organisms in Archaea. Available sequenced genomes indicate that the archaeal DNA primase is a homolog of the eukaryotic p48 subunit. Here, we report investigations of a p48-like DNA primase from Pyrococcus furiosus, a hyperthermophilic euryarchaeote. P. furiosus p48-like protein (Pfup41), unlike hitherto-reported primases, does not catalyze by itself the synthesis of short RNA primers but preferentially utilizes deoxynucleotides to synthesize DNA fragments up to several kilobases in length. Pfup41 is the first DNA polymerase that does not require primers for the synthesis of long DNA strands.  相似文献   

9.
DNA polymerase alpha and primase are two key enzymatic components of the eukaryotic DNA replication complex. In situ hybridization of cloned cDNAs for mouse DNA polymerase alpha and for the two subunits of mouse primase has been utilized to physically map these genes in the mouse genome. The DNA polymerase alpha gene (Pola) was mapped to the mouse X chromosome in region C-D. The gene encoding the p58 subunit of primase (Prim2) was located to mouse chromosome 1 in region A5-B and the p49 subunit gene (Prim1) was found to be on mouse chromosome 10 in the distal part of band D that is close to the telomere. Current knowledge of mouse and human conserved chromosomal regions along with the findings presented here lead to predictions of where the genes for the DNA primase subunits may be found in the human genome: the p58 subunit gene may be on human chromosome 2 and the p49 subunit gene on human chromosome 12. The mapping of Pola to region C-D of the mouse X chromosome adds a new marker in a conserved region between the mouse X chromosome and region Xp21-22.1 of the human X chromosome.  相似文献   

10.
Reynolds N  MacNeill SA 《Gene》1999,230(1):15-22
DNA polymerase delta (Pol delta), which plays keys roles in DNA replication, repair and recombination in eukaryotic cells, comprises at least two essential subunits - a large catalytic subunit (PolD1) possessing both DNA polymerase and 3'-5' exonuclease activities, and a smaller subunit (PolD2) whose function is not yet clear. Here we describe the cloning and sequencing of a Xenopus cDNA encoding a homologue of the PolD2 subunit. This protein (designated XlCdc1) is 69% identical to the human PolD2 protein and 34% identical to fission yeast Cdc1. Alignment of PolD2 protein sequences across ten eukaryotic species identifies 36 invariant amino-acid positions. These 36 residues are located within ten conserved regions (designated I-X) likely to have key functional roles. Consistent with this, the mutations in six previously identified yeast mutant PolD2 proteins map within conserved regions III, VI, VII and VIII. Several of the invariant amino acids are also conserved across the archaeal DNA polymerase II DP1 protein family.  相似文献   

11.
Cellular organisms in different domains of life employ structurally unrelated, non-homologous DNA primases for synthesis of a primer for DNA replication. Archaea and eukaryotes encode enzymes of the archaeo-eukaryotic primase (AEP) superfamily, whereas bacteria uniformly use primases of the DnaG family. However, AEP genes are widespread in bacterial genomes raising questions regarding their provenance and function. Here, using an archaeal primase–polymerase PolpTN2 encoded by pTN2 plasmid as a seed for sequence similarity searches, we recovered over 800 AEP homologs from bacteria belonging to 12 highly diverse phyla. These sequences formed a supergroup, PrimPol-PV1, and could be classified into five novel AEP families which are characterized by a conserved motif containing an arginine residue likely to be involved in nucleotide binding. Functional assays confirm the essentiality of this motif for catalytic activity of the PolpTN2 primase–polymerase. Further analyses showed that bacterial AEPs display a range of domain organizations and uncovered several candidates for novel families of helicases. Furthermore, sequence and structure comparisons suggest that PriCT-1 and PriCT-2 domains frequently fused to the AEP domains are related to each other as well as to the non-catalytic, large subunit of archaeal and eukaryotic primases, and to the recently discovered PriX subunit of archaeal primases. Finally, genomic neighborhood analysis indicates that the identified AEPs encoded in bacterial genomes are nearly exclusively associated with highly diverse integrated mobile genetic elements, including integrative conjugative plasmids and prophages.  相似文献   

12.
13.
Genome replication generally requires primases, which synthesize an initial oligonucleotide primer, and DNA polymerases, which elongate the primer. Primase and DNA polymerase activities are combined, however, in newly identified replicases from archaeal plasmids, such as pRN1 from Sulfolobus islandicus. Here we present a structure-function analysis of the pRN1 primase-polymerase (prim-pol) domain. The crystal structure shows a central depression lined by conserved residues. Mutations on one side of the depression reduce DNA affinity. On the opposite side of the depression cluster three acidic residues and a histidine, which are required for primase and DNA polymerase activity. One acidic residue binds a manganese ion, suggestive of a metal-dependent catalytic mechanism. The structure does not show any similarity to DNA polymerases, but is distantly related to archaeal and eukaryotic primases, with corresponding active-site residues. We propose that archaeal and eukaryotic primases and the prim-pol domain have a common evolutionary ancestor, a bifunctional replicase for small DNA genomes.  相似文献   

14.
DNA primases are essential for the initiation of DNA replication and progression of the replication fork. Recent phylogenetic analyses coupled with biochemical and structural studies have revealed that the arrangement of catalytic residues within the archaeal and eukaryotic primase has significant similarity to those of the Pol X family of DNA-repair polymerases. Furthermore, two additional groups of enzymes, the ligase/primase of the bacterial nonhomologous end-joining machinery and a putative replicase from an archaeal plasmid have shown striking functional and structural similarities to the core primase. The promiscuous nature of the archaeal primases suggests that these proteins might have additional roles in DNA repair in the archaea.  相似文献   

15.
DNA polymerases cannot synthesize DNA without a primer, and DNA primase is the only specialized enzyme capable of de novo synthesis of short RNA primers. In eukaryotes, primase functions within a heterotetrameric complex in concert with a tightly bound DNA polymerase α (Pol α). In humans, the Pol α part is comprised of a catalytic subunit (p180) and an accessory subunit B (p70), and the primase part consists of a small catalytic subunit (p49) and a large essential subunit (p58). The latter subunit participates in primer synthesis, counts the number of nucleotides in a primer, assists the release of the primer-template from primase and transfers it to the Pol α active site. Recently reported crystal structures of the C-terminal domains of the yeast and human enzymes’ large subunits provided critical information related to their structure, possible sites for binding of nucleotides and template DNA, as well as the overall organization of eukaryotic primases. However, the structures also revealed a difference in the folding of their proposed DNA-binding fragments, raising the possibility that yeast and human proteins are functionally different. Here we report new structure of the C-terminal domain of the human primase p58 subunit. This structure exhibits a fold similar to a fold reported for the yeast protein but different than a fold reported for the human protein. Based on a comparative analysis of all three C-terminal domain structures, we propose a mechanism of RNA primer length counting and dissociation of the primer-template from primase by a switch in conformation of the ssDNA-binding region of p58.  相似文献   

16.
In most organisms, DNA replication is initiated by DNA primases, which synthesize primers that are elongated by DNA polymerases. In this study, we describe the isolation and biochemical characterization of the DNA primase complex and its subunits from the archaeon Thermococcus kodakaraensis. The T. kodakaraensis DNA primase complex is a heterodimer containing stoichiometric levels of the p41 and p46 subunits. The catalytic activity of the complex resides within the p41 subunit. We show that the complex supports both DNA and RNA synthesis, whereas the p41 subunit alone marginally produces RNA and synthesizes DNA chains that are longer than those formed by the complex. We report that the T. kodakaraensis primase complex preferentially interacts with dNTP rather than ribonucleoside triphosphates and initiates RNA as well as DNA chains de novo. The latter findings indicate that the archaeal primase complex, in contrast to the eukaryote homolog, can initiate DNA chain synthesis in the absence of ribonucleoside triphosphates. DNA primers formed by the archaeal complex can be elongated extensively by the T. kodakaraensis DNA polymerase (Pol) B, whereas DNA primers formed by the p41 catalytic subunit alone were not. Supplementation of reactions containing the p41 subunit with the p46 subunit leads to PolB-catalyzed DNA synthesis. We also established a rolling circle reaction using a primed 200-nucleotide circle as the substrate. In the presence of the T. kodakaraensis minichromosome maintenance (MCM) 3' → 5' DNA helicase, PolB, replication factor C, and proliferating cell nuclear antigen, long leading strands (>10 kb) are produced. Supplementation of such reactions with the DNA primase complex supported lagging strand formation as well.  相似文献   

17.
DNA primases are responsible for the synthesis of the short RNA primers that are used by the replicative DNA polymerases to initiate DNA synthesis on the leading- and lagging-strand at the replication fork. In this study, we report the purification and biochemical characterization of a DNA primase (Sso DNA primase) from the thermoacidophilic crenarchaeon Sulfolobus solfataricus. The Sso DNA primase is a heterodimer composed of two subunits of 36 kDa (small subunit) and 38 kDa (large subunit), which show sequence similarity to the eukaryotic DNA primase p60 and p50 subunits, respectively. The two polypeptides were co-expressed in Escherichia coli and purified as a heterodimeric complex, with a Stokes radius of about 39.2 Å and a 1:1 stoichiometric ratio among its subunits. The Sso DNA primase utilizes poly-pyrimidine single-stranded DNA templates with low efficiency for de novo synthesis of RNA primers, whereas its synthetic function is specifically activated by thymine-containing synthetic bubble structures that mimic early replication intermediates. Interestingly, the Sso DNA primase complex is endowed with a terminal nucleotidyl-tranferase activity, being able to incorporate nucleotides at the 3′ end of synthetic oligonucleotides in a non-templated manner.  相似文献   

18.
DNA polymerases cannot synthesize DNA without a primer, and DNA primase is the only specialized enzyme capable of de novo synthesis of short RNA primers. In eukaryotes, primase functions within a heterotetrameric complex in concert with a tightly bound DNA polymerase α (Pol α). In humans, the Pol α part is comprised of a catalytic subunit (p180) and an accessory subunit B (p70), and the primase part consists of a small catalytic subunit (p49) and a large essential subunit (p58). The latter subunit participates in primer synthesis, counts the number of nucleotides in a primer, assists the release of the primer-template from primase and transfers it to the Pol α active site. Recently reported crystal structures of the C-terminal domains of the yeast and human enzymes'' large subunits provided critical information related to their structure, possible sites for binding of nucleotides and template DNA, as well as the overall organization of eukaryotic primases. However, the structures also revealed a difference in the folding of their proposed DNA-binding fragments, raising the possibility that yeast and human proteins are functionally different. Here we report new structure of the C-terminal domain of the human primase p58 subunit. This structure exhibits a fold similar to a fold reported for the yeast protein but different than a fold reported for the human protein. Based on a comparative analysis of all three C-terminal domain structures, we propose a mechanism of RNA primer length counting and dissociation of the primer-template from primase by a switch in conformation of the ssDNA-binding region of p58.Key words: DNA primase, prim1, prim2, replication, 4Fe-4S cluster, crystal structure, DNA polymerase α  相似文献   

19.
Primase and GINS are essential factors for chromosomal DNA replication in eukaryotic and archaeal cells. Here we describe a previously undetected relationship between the C-terminal domain of the catalytic subunit (PriS) of archaeal primase and the B-domains of the archaeo-eukaryotic GINS proteins in the form of a conserved structural domain comprising a three-stranded antiparallel β-sheet adjacent to an α-helix and a two-stranded β-sheet or hairpin. The presence of a shared domain in archaeal PriS and GINS proteins, the genes for which are often found adjacent on the chromosome, suggests simple mechanisms for the evolution of these proteins.  相似文献   

20.
The eukaryotic replisome is comprised of three family-B DNA polymerases (Polα, δ and ϵ). Polα forms a stable complex with primase to synthesize short RNA-DNA primers, which are subsequently elongated by Polδ and Polϵ in concert with proliferating cell nuclear antigen (PCNA). In some species of archaea, family-D DNA polymerase (PolD) is the only DNA polymerase essential for cell viability, raising the question of how it alone conducts the bulk of DNA synthesis. We used a hyperthermophilic archaeon, Thermococcus kodakarensis, to demonstrate that PolD connects primase to the archaeal replisome before interacting with PCNA. Whereas PolD stably connects primase to GINS, a component of CMG helicase, cryo-EM analysis indicated a highly flexible PolD–primase complex. A conserved hydrophobic motif at the C-terminus of the DP2 subunit of PolD, a PIP (PCNA-Interacting Peptide) motif, was critical for the interaction with primase. The dissociation of primase was induced by DNA-dependent binding of PCNA to PolD. Point mutations in the alternative PIP-motif of DP2 abrogated the molecular switching that converts the archaeal replicase from de novo to processive synthesis mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号