首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under appropriate conditions, block copolymeric macroamphiphiles will self-assemble in water to form vesicles, referred to as polymersomes. We report here polymersomes that can protect biomolecules in the extracellular environment, are taken up by endocytosis, and then suddenly burst within the early endosome, releasing their contents prior to exposure to the harsh conditions encountered after lysosomal fusion. Specifically, block copolymers of the hydrophile poly(ethylene glycol) (PEG) and the hydrophobe poly(propylene sulfide) (PPS) were synthesized with an intervening disulfide, PEG17-SS-PPS30. Polymersomes formed from this block copolymer were demonstrated to disrupt in the presence of intracellular concentrations of cysteine. In cellular experiments, uptake, disruption, and release were observed within 10 min of exposure to cells, well within the time frame of the early endosome of endolysosomal processing. This system may be useful in cytoplasmic delivery of biomolecular drugs such as peptides, proteins, oligonucleotides, and DNA.  相似文献   

2.
Coatings derived from surface active block copolymers (SABCs) having a combination of hydrophobic aliphatic (linear hydrocarbon or propylene oxide-derived groups) and hydrophilic poly(ethlyene glycol) (PEG) side chains have been developed. The coatings demonstrate superior performance against protein adsorption as well as resistance to biofouling, providing an alternative to coatings containing fluorinated side chains as the hydrophobe, thus reducing the potential environmental impact. The surfaces were examined using dynamic water contact angle, captive air-bubble contact angle, atomic force microscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure analysis. The PS(8K)-b-P(E/B)(25K)-b-PI(10K) triblock copolymer precursor (K3) initially dominated the dry surface. In contrast to previous studies with mixed fluorinated/PEG surfaces, these new materials displayed significant surface changes after exposure to water that allowed fouling resistant behavior. PEG groups buried several nanometers below the surface in the dry state were able to occupy the coating surface after placement in water. The resulting surface exhibits a very low contact angle and good antifouling properties that are very different from those of K3. The surfaces are strongly resistant to protein adsorption using bovine serum albumin as a standard protein challenge. Biofouling assays with sporelings of the green alga Ulva and cells of the diatom Navicula showed the level of adhesion was significantly reduced relative to that of a PDMS standard and that of the triblock copolymer precursor of the SABCs.  相似文献   

3.
This paper discusses the solid state and melt nanoscale structure of a series of novel poly(ethylene glycol) (PEG) hybrid di- and triblock copolymers, which contain amphiphilic beta-strand peptide sequences. The block copolymers have been prepared via solid-phase synthesis, affording perfectly monodisperse peptide segments with a precisely defined alpha-amino acid sequence. Attenuated total reflection Fourier transform infrared spectroscopy and X-ray scattering experiments indicate that the self-assembly properties of the peptide sequences are retained upon conjugation to PEG and mediate the formation of an ordered superstructure consisting of alternating PEG layers and peptide domains with an highly organized antiparallel beta-sheet structure. The results suggest that combination of biological structural motifs with synthetic polymers may be a versatile strategy for the development of novel self-assembled materials with complex internal structures and the potential to interface with biology.  相似文献   

4.
In this work, we design and investigate the complex formation of highly uniform monomolecular siRNA complexes utilizing block copolymers consisting of a cationic peptide moiety covalently bound to a poly(ethylene glycol) (PEG) moiety. The aim of the study was to design a shielded siRNA construct containing a single siRNA molecule to achieve a sterically stabilized complex with enhanced diffusive properties in macromolecular networks. Using a 14 lysine-PEG (K14-PEG) linear diblock copolymer, formation of monomolecular siRNA complexes with a stoichiometric 1:3 grafting density of siRNA to PEG is realized. Alternatively, similar PEGylated monomolecular siRNA particles are achieved through complexation with a graft copolymer consisting of six cationic peptide side chains bound to a PEG backbone. The hydrodynamic radii of the resulting complexes as measured by fluorescence correlation spectroscopy (FCS) were found to be in good agreement with theoretical predictions using polymer brush scaling theory of a PEG decorated rodlike molecule. It is furthermore demonstrated that the PEG coating of the siRNA-PEG complexes can be rendered biodegradable through the use of a pH-sensitive hydrazone or a reducible disulfide bond linker between the K14 and the PEG blocks. To model transport under in vivo conditions, diffusion of these PEGylated siRNA complexes is studied in various charged and uncharged matrix materials. In PEG solutions, the diffusion coefficient of the siRNA complex is observed to decrease with increasing polymer concentration, in agreement with theory of probe diffusion in semidilute solutions. In charged networks, the behavior is considerably more complex. FCS measurements in fibrin gels indicate complete dissociation of the diblock copolymer from the complex, while transport in collagen solutions results in particle aggregation.  相似文献   

5.
Giant and stable worm micelles formed from poly(ethylene glycol) (PEG)-based diblock copolymer amphiphiles have the potential advantage compared to smaller assemblies for delivery of a large quantity of hydrophobic drugs or dyes per carrier. Here we show that worm micelles can be targeted to cells with internalization and delivery of nontoxic dyes as well as cytotoxic drugs. Constituent copolymers are end-biotinylated to mediate high affinity binding of worm micelles to both avidin-bearing surfaces and biotin-specific receptors on smooth muscle cells. Pristine worm micelles, that lack biotin, show much less frequent and nonspecific point attachments to the same surfaces. Biotinylated worm micelles prove stable in aqueous solution for at least a month and also prove capable of loading, retaining, and delivering hydrophobic dyes and drugs. The results thus demonstrate the feasibility of targeted delivery by polymeric worm micelles.  相似文献   

6.
Copolymers with different hydrophilic/lipophilic ratios (HLR) were used to optimize the compatibility between polymer as drug carrier and quercetin as lipophilic drug. Synthesis of amphiphilic triblock copolymers (TC) of poly(butylene adipate)–poly(ethylene glycol)–poly(butylene adipate) (PBA–PEG–PBA) with different PBA molecular weights is the first approach for this purpose. Polymerization and structural features of the polymers were analyzed by different characterization techniques (GPC, 1H NMR and FT-IR). Formation of hydrophobic and hydrophilic domains with different ratios in the ABA-triblock copolymers was studied by 1H NMR. The sunflower-like nanoparticles were prepared by self-assembling of the amphiphilic copolymers in the aqueous solution. The hydrophobic PBA segments formed the central solid-like core which stabilized by the hydrophilic PEG rings. The optimum HLR for these copolymers was determined on the basis of drug release time and profile, obtained from freeze-dried nanoparticle powders. The results indicated that optimum HLR for the sustained quercetin release obtained at higher molecular weight of polyesteric domains. Zeta potential measurements showed that the nanoparticle size was close related to the initial concentrations of the nanoparticle dispersions and the compositions of the triblock copolymers. Moreover, TEM pictures showed that the nanocarriers morphologies were changed by changing HLR of triblock copolymers. The PBA–PEG–PBA nanoparticles also showed good drug loading properties, suggesting that they were very suitable as delivery devices for hydrophobic drugs.  相似文献   

7.
One-component homopolymers of cationic monomers (polycations) and diblock copolymers comprising poly(ethylene glycol) (PEG) and a polycation block have been the most widely used types of polymers for the formulation of polymer-based gene delivery systems. In this study, we incorporate a hydrophobic middle block into the conventional PEG-polycation architecture and investigate the effects of this hydrophobic modification on the physicochemical and cell-level biological properties of the polymer-DNA complexes that are relevant to gene delivery applications. The ABC-type triblock copolymer used in this study consists of (A) PEG, (B) hydrophobic poly( n-butyl acrylate) (PnBA), and (C) cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) component polymers. The properties of the triblock copolymer/DNA complexes are compared with those of two other more conventional DNA carriers derived, respectively, using a PDMAEMA homopolymer and a PEG-PDMAEMA diblock copolymer that had comparable molecular weights for individual blocks. In aqueous solution, the PEG-PnBA-PDMAEMA polymer forms positively charged spherical micelles. The electrostatic complexation of these micelles with plasmid DNA molecules results in the formation of stable small-sized DNA particles that are coated with a micelle monolayer, as confirmed by agarose gel electrophoresis, dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryo-TEM). Proton nuclear magnetic resonance ( (1)H NMR) spectroscopy measurements indicate that the whole micelle-DNA assembly (named "micelleplex" for convenience) is shielded predominantly by the PEG chains. DLS and optical microscopy imaging measurements indicate that compared with PDMAEMA-DNA polyplexes, the micelleplexes have a significantly lower tendency to aggregate under physiological salt concentrations and show reduced interactions with negatively charged components in serum such as albumin and erythrocytes. While the micelleplexes are comparable to the PEG-PDMAEMA-based DNA polyplexes in terms of their stability against aggregation under high salt concentrations and in the presence of the albumin protein, they have a slightly higher tendency to interact with erythrocytes than the diblock copolymer polyplexes. Agarose gel electrophoresis measurements indicate that relative to the PEG-PDMAEMA polyplexes, the micelleplexes provide better protection of the encapsulated DNA from enzymatic degradation and also exhibit greater stability against disintegration induced by polyanionic additives; in these respects, the PDMAEMA homopolymer-based polyplexes show the best performance. In vitro studies in HeLa cells indicate that the PDMAEMA polyplexes show the highest gene transfection efficiency among the three different gene delivery systems. Between the micelleplexes and the PEG-PDMAEMA polyplexes, a higher gene transfection efficiency is observed with the latter system. All three formulations show comparable levels of cytotoxicity in HeLa cells.  相似文献   

8.
A series of novel amphiphilic triblock copolymers of poly(ethyl ethylene phosphate) and poly(-caprolactone) (PEEP-PCL-PEEP) with various PEEP and PCL block lengths were synthesized and characterized. These triblock copolymers formed micelles composed of a hydrophobic core of poly(-caprolactone) (PCL) and a hydrophilic shell of poly(ethyl ethylene phosphate) (PEEP) in aqueous solution. The micelle morphology was spherical, determined by transmission electron microscopy. It was found that the size and critical micelle concentration values of the micelles depended on both hydrophobic PCL block length and PEEP hydrophilic block length. The in vitro degradation characteristics of the triblock copolymers were investigated in micellar form, showing that these copolymers were completely biodegradable under enzymatic catalysis of Pseudomonas lipase and phosphodiesterase I. These triblock copolymers were used for paclitaxel (PTX) encapsulation to demonstrate the potential in drug delivery. PTX was successfully loaded into the micelles, and the in vitro release profile was found to be correlative to the polymer composition. These biodegradable triblock copolymer micelles are potential as novel carriers for hydrophobic drug delivery.  相似文献   

9.
Nonviral vectors for gene therapy have recently received an increased impetus because of the inherent safety problems of the viral vectors, while their transfection efficiency is generally low compared to the viral vectors. The lack of the ability to escape from the endosomal compartments is believed to be one of the critical barriers to the intracellular delivery of noviral gene vectors. This study was devoted to the design and preparation of a novel ABC triblock copolymer for constructing a pH-responsive and targetable nonviral gene vector. The copolymer, lactosylated poly(ethylene glycol)-block-poly(silamine)-block-poly[2-(N,N-dimethylamino)ethyl methacrylate] (Lac-PEG-PSAO-PAMA), consists of lactosylated poly(ethylene glycol) (A-segment), a pH-responsive polyamine segment (B-segment), and a DNA-condensing polyamine segment (C-segment). The Lac-PEG-PSAO-PAMA spontaneously associated with plasmid DNA (pDNA) to form three-layered polyplex micelles with a PAMA/pDNA polyion complex (PIC) core, an uncomplexed PSAO inner shell, and a lactosylated PEG outer shell, as confirmed by 1H NMR spectroscopy. Under physiological conditions, the Lac-PEG-PSAO-PAMA/pDNA polyplex micelles prepared at an N/P (number of amino groups in the copolymer/number of phosphate groups in pDNA) ratio above 3 were found to be able to condense pDNA, thus adopting a relatively small size (< 150 nm) and an almost neutral surface charge (zeta approximately +5 mV). The micelle underwent a pH-induced size variation (pH = 7.4, 132.6 nm --> pH = 4.0, 181.8 nm) presumably due to the conformational changes (globule-rod transition) of the uncomplexed PSAO chain in response to pH, leading to swelling of the free PSAO inner shell at lowered pH while retaining the condensed pDNA in the PAMA/pDNA PIC core. Furthermore, the micelles exhibited a specific cellular uptake into HuH-7 cells (hepatocytes) through asialoglycoprotein (ASGP) receptor-mediated endocytosis and achieved a far more efficient transfection ability of a reporter gene compared to the Lac-PEG-PSAO/pDNA and Lac-PEG-PAMA/pDNA polyplex micelles composed of the diblock copolymers and pDNA. The effect of hydroxychloroquine as an endosomolytic agent on the transfection efficiency was not observed for the Lac-PEG-PSAO-PAMA/pDNA polyplex micelles, whereas the nigericin treatment of the cell as an inhibitor for the endosomal acidification induced a substantial decrease in the transfection efficiency, suggesting that the protonation of the free PSAO inner shell in response to a pH decrease in the endosome might lead to the disruption of the endosome through buffering of the endosomal cavity. Therefore, the polyplex micelle composed of ABC (ligand-PEG/pH-responsive segment/DNA-condensing segment) triblock copolymer would be a promising approach to a targetable and endosome disruptive nonviral gene vector.  相似文献   

10.
Small interfering RNA molecules (siRNA) hold great promise to specifically target cytoprotective factors to enhance cancer therapy. Like antisense RNA strategies, however, the use of siRNA is limited because of in vivo instability. As a first step to overcome delivery issues, a series of graft copolymers of polyethylene glycol and polyethylenimine (PEI-g-PEG) were synthesized and investigated as nontoxic carriers for delivery of siRNA targeting the signaling peptide of secretory clusterin (sCLU), a prosurvival factor that protects cells from ionizing radiation (IR) injury, as well as chemotherapeutic agents. Three copolymers with different PEG grafting densities were tested for their abilities to bind and form nanocomplexes with siRNA. A copolymer composed of 10 PEG grafts (2 kDa each) per PEI polymer (2k10 copolymer) gave the highest binding affinity to siRNA by ethidium bromide exclusion assays, and had the smallest nanocomplex size (115 +/- 13 nm diameter). In human breast cancer MCF-7 cells, 2k10-siRNA-sCLU nanocomplexes suppressed both basal as well as IR-induced sCLU protein expression, which led to an over 3-fold increase in IR-induced lethality over 2k10-siRNA scrambled controls. In summary, this study demonstrates the proof-of-principle in using nanoparticle-mediated delivery of specific siRNAs to enhance the lethality of IR exposure in vitro, opening the door for siRNA-mediated knockdown of specific cytoprotective factors, such as DNA repair, anti-apoptotic, free radical scavenging, and many other proteins.  相似文献   

11.
We describe the synthesis and characterization of a family of biocompatible ABA-triblock copolymers that comprised of hydrophilic A-blocks of poly(ethylene glycol) and hydrophobic B-blocks of oligomers of suberic acid and desaminotyrosyl-tyrosine esters. The triblock copolymers spontaneously self-assemble in aqueous solution into nanospheres, with hydrodynamic diameters between 40 and 70 nm, that do not dissociate under chromatographic and ultracentrifugation conditions. These nanospheres form strong complexes with hydrophobic molecules, including the fluorescent dye 5-dodecanoylaminofluorescein (DAF) and the antitumor drug, paclitaxel, but not with hydrophilic molecules such as fluorescein and Oregon Green. The nanosphere-paclitaxel complexes retain in vitro the high antiproliferative activity of paclitaxel, demonstrating that these nanospheres may be useful for delivery of the hydrophobic drugs.  相似文献   

12.
Poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) block copolymers self-assemble into micelles in aqueous solution. We have examined whether these micelles can internalize into P19 cells in vitro. Fluorescently labeled PEO(45)-b-PCL(23) block copolymer was prepared by conjugating a tetramethylrhodamine molecule to the end of the hydrophobic PCL block. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies yielded 24 +/- 2 and 25 +/- 2 nm, respectively, for the diameters of the micelles. The studies also showed that chemical labeling did not effect the morphology or size. When the rhodamine-labeled PEO(45)-b-PCL(23) block copolymer micelles were tested in vitro, time-, concentration-, and pH-dependence of the internalization process suggested that internalization proceeded by endocytosis. The results from these studies provide the first direct evidence for the internalization of PEO(45)-b-PCL(23) micelles. Future studies will utilize multiple labeling of these micelles, allowing questions to be addressed related to the fate of internalized micelles as drug carriers, the destination of the incorporated drugs or fluorescent probes released from micelles, and the identification of the subcellular localization of the whole drug-carrier system within cells, both in vitro and in vivo.  相似文献   

13.
Glycopolymer-polypeptide triblock copolymers of the structure, poly(l-alanine)-b-poly(2-acryloyloxyethyl-lactoside)-b-poly(l-alanine) (AGA), have been synthesized by sequential atom transfer radical polymerization (ATRP) and ring-opening polymerization (ROP). Controlled free radical polymerization of 2-O-acryloyl-oxyethoxyl-(2,3,4,6-tetra-O-acetyl-beta-d-galactopyranosyl)-(1-4)-2,3,6-tri-O-acetyl-beta-d-glucopyranoside (AEL) by ATRP with a dibromoxylene (DBX)/CuBr/bipy complex system was used to generate a central glycopolymer block. Telechelic glycopolymers with diamino end groups were obtained by end group transformation and subsequently used as macroinitiators for ROP of l-alanine N-carboxyanhydride monomers (Ala-NCA). Gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy analysis demonstrated that copolymer molecular weight and composition were controlled by both the molar ratios of the Ala-NCA monomer to macroinitiator and monomer conversion and exhibited a narrow distribution (Mw/Mn = 1.06-1.26). FT-IR spectroscopy of triblock copolymers revealed that the ratio of alpha-helix/beta-sheet increased with poly(l-alanine) block length. Of note, transmission electron microscopy (TEM) demonstrated that selected amphiphilic glycopolymer-polypeptide triblock copolymers self-assemble in aqueous solution to form nearly spherical aggregates of several hundreds nanometer in diameter. Significantly, the sequential application of ATRP and ROP techniques provides an effective method for producing triblock copolymers with a central glycopolymer block and flanking polypeptide blocks of defined architecture, controlled molecular weight, and low polydispersity.  相似文献   

14.
Block copolymers can adopt a wide range of morphologies in dilute aqueous solution. There is a significant amount of interest in the use of block copolymer vesicles for a number of applications. We show that a series of oligo(valine) and oligo(phenylalanine) peptides coupled to a methacrylic group can be prepared by conventional peptide coupling techniques. These can be successfully polymerized by atom transfer radical polymerization (ATRP) in hexafluoroisopropanol (HFIP) giving access to poly(ethylene oxide)- b-poly(side-chain peptides). Many of these polymers self-assemble to form vesicles using an organic to aqueous solvent exchange. One example with a divaline hydrophobic block gives a mixture of toroids and vesicles. Circular dichroism demonstrates that secondary structuring is observed in the hydrophobic region of the vesicle walls for the valine side-chain containing polymers.  相似文献   

15.
Novel ABA triblock copolymers consisting of low molecular weight linear polyethylenimine (PEI) as the A block and poly(ethylene glycol) (PEG) as the B block were prepared and evaluated as polymeric transfectant. The cationic polymerization of 2-methyl-2-oxazoline (MeOZO) using PEG-bis(tosylate) as a macroinitiator followed by acid hydrolysis afforded linear PEI-PEG-PEI triblock copolymers with controlled compositions. Two copolymers, PEI-PEG-PEI 2100-3400-2100 and 4000-3400-4000, were synthesized. Both copolymers were shown to interact with and condense plasmid DNA effectively to give polymer/DNA complexes (polyplexes) of small sizes (<100 nm) and moderate zeta-potentials (approximately +10 mV) at polymer/plasmid weight ratios > or =1.5/1. These polyplexes were able to efficiently transfect COS-7 cells and primary bovine endothelial cells (BAECs) in vitro. For example, PEI-PEG-PEI 4000-3400-4000 based polyplexes showed a transfection efficiency comparable to polyplexes of branched PEI 25000. The transfection activity of polyplexes of PEI-PEG-PEI 4000-3400-4000 in BAECs using luciferase as a reporter gene was 3-fold higher than that for linear PEI 25000/DNA formulations. Importantly, the presence of serum in the transfection medium had no inhibitive effect on the transfection activity of the PEI-PEG-PEI polyplexes. These PEI-PEG-PEI triblock copolymers displayed also an improved safety profile in comparison with high molecular weight PEIs, since the cytotoxicity of the polyplex formulations was very low under conditions where high transgene expression was found. Therefore, linear PEI-PEG-PEI triblock copolymers are an attractive novel class of nonviral gene delivery systems.  相似文献   

16.
X. Xiao  H. Liu  Y. Hu 《Molecular simulation》2013,39(13):1083-1091
A Monte Carlo simulation using the bond fluctuation and cavity diffusion algorithms was adopted to investigate the micro-phase separation of ABC triblock copolymer in ultra-thin film on simple cubic lattice. Simulations reveal that the morphologies of ABC copolymer films are dependent on not only the volume fraction of the middle block B (f B) but also on the ratio of interaction between different kinds of blocks (?(AC)/?(AB)). As for the molecular orientation, the copolymers stretch parallel to the flat surface at lower f B, but tend to align perpendicularly along z direction at higher f B. Furthermore, the chain configuration was discussed in detail. Smaller ?(AC)/?(AB) is beneficial to the formation of a “loop” configuration, whereas, larger ?(AC)/?(AB) would result in a “bridge” configuration of ABC triblock copolymer chains. The formation of micro-phase structures was illustrated intuitively by the molecular orientation and the chain configuration.  相似文献   

17.
The relationship between molecular architecture and the nature of interactions with lipid bilayers has been studied for a series of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers using small-angle X-ray scattering (SAXS) and thermal analysis (differential scanning calorimetry, DSC). The number of molecular repeat units in the hydrophobic poly(propylene oxide), PPO, block has been found to be a critical determinant of the nature of triblock copolymer-lipid bilayer association. For dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-based biomembrane structures, polymers possessing a PPO chain length commensurate with the acyl chain dimensions of the lipid bilayer yield highly ordered, swollen lamellar structures consistent with well-integrated (into the lipid bilayer) PPO blocks. Triblock copolymers of lesser PPO chain length yield materials with structural characteristics similar to a simple dispersion of DMPC in water. Increasing the concentration (from 4 to 12 mol %) of well-integrated triblock copolymers enhances the structural ordering of the lamellar phase, while concentrations exceeding 16 mol % result in the formation of a hexagonal phase. Examination of temperature-induced changes in the structure of these mesophases (complex fluids) reveals that if the temperature is reduced sufficiently, all compositions exclude polymer and thus exhibit the characteristic SAXS pattern for hydrated DMPC bilayers. Increasing the temperature promotes better insertion of the polymers possessing PPO chain lengths sufficient for membrane insertion. No temperature-induced structural changes are observed in compositions prepared with PEO-PPO-PEO polymers that feature PPO length insufficient to permit full incorporation into the lipid bilayer.  相似文献   

18.
For therapeutic applications of small interfering RNA (siRNA), serum stability, enhanced cellular uptake, and facile endosome escape are key issues for designing carriers. In this study, green fluorescent protein (GFP) siRNA was conjugated to a six‐arm polyethylene glycol (PEG) derivative via a reducible disulfide linkage (6PEG‐siRNA). The 6PEG‐siRNA conjugate was also functionalized with a cell penetrating peptide, Hph1 to enhance its cellular uptake property (6PEG‐siRNA‐Hph1). The 6PEG‐siRNA‐Hph1 conjugate was electrostatically complexed with cationic self‐crosslinked fusogenic KALA peptide (cl‐KALA) to form multifunctional polyelectrolyte complex micelles for gene silencing. The resultant siRNA complex formulation with multiple PEG chains showed superior physical stability and resistance to enzymatic degradation. The 6PEG‐siRNA‐Hph1/cl‐KALA complexes exhibited enhanced GFP gene silencing efficiency for MDA‐MB‐435 cells in the serum containing condition. The current reducible and multifunctional polyelectrolyte complex micelles are expected to have high potential for efficient delivery of therapeutic siRNA. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

19.
Kim TI  Seo HJ  Choi JS  Jang HS  Baek JU  Kim K  Park JS 《Biomacromolecules》2004,5(6):2487-2492
A novel triblock copolymer, PAMAM-block-PEG-block-PAMAM was synthesized and applied as a gene carrier. PAMAM dendrimer is proven to be an efficient gene carrier itself, but it is associated with certain problems such as low water solubility and considerable cytotoxicity. Therefore, we introduced PEG to engineer a nontoxic and highly transfection efficient polymeric gene carrier because PEG is known to convey water-solubility and biocompatibility to the conjugated copolymer. This copolymer could achieve self-assembly with plasmid DNA, forming compact nanosized particles with a narrow size distribution. Fulfilling our expectations, the copolymer was found to form highly water-soluble polyplexes with plasmid DNA, showed little cytotoxicity despite its poor degradability, and finally achieved high transfection efficiency comparable to PEI in 293 cells. Consequently, these data show that an approach involving the introduction of PEG to create a tree-like cationic copolymer possesses a great potential for use in gene delivery systems.  相似文献   

20.
For two series of polyethylenimine-graft-poly(ethylene glycol) (PEI-g-PEG) block copolymers, the influence of copolymer structure on DNA complexation was investigated and physicochemical properties of these complexes were compared with the results of blood compatibility, cytotoxicity, and transfection activity assays. In the first series, PEI (25 kDa) was grafted to different degrees of substitution with PEG (5 kDa) and in the second series the molecular weight (MW) of PEG was varied (550 Da to 20 kDa). Using atomic force microscopy, we found that the copolymer block structure strongly influenced the DNA complex size and morphology: PEG 5 kDa significantly reduced the diameter of the spherical complexes from 142 +/- 59 to 61 +/- 28 nm. With increasing degree of PEG grafting, complexation of DNA was impeded and complexes lost their spherical shape. Copolymers with PEG 20 kDa yielded small, compact complexes with DNA (51 +/- 23 nm) whereas copolymers with PEG 550 Da resulted in large and diffuse structures (130 +/- 60 nm). The zeta-potential of complexes was reduced with increasing degree of PEG grafting if MW >or= 5 kDa. PEG 550 Da did not shield positive charges of PEI sufficiently leading to hemolysis and erythrocyte aggregation. Cytotoxicity (lactate dehydrogenase assay) was independent of MW of PEG but affected by the degree of PEG substitution: all copolymers with more than six PEG blocks formed DNA complexes of low toxicity. Finally, transfection efficiency of the complexes was studied. The combination of large particles, low toxicity, and high positive surface charge as in the case of copolymers with many PEG 550 Da blocks proved to be most efficient for in vitro gene transfer. To conclude, the degree of PEGylation and the MW of PEG were found to strongly influence DNA condensation of PEI and therefore also affect the biological activity of the PEI-g-PEG/DNA complexes. These results provide a basis for the rational design of block copolymer gene delivery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号