首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R27, an IncHI1 plasmid of 182 kilobases (kb), which was originally isolated fromSalmonella typhimurium, was found to contain two copies of IS1 in direct orientation. Deletion derivatives constructed in vitro were of two types: a maxi-derivative of 110 kb (pDT1047) with a single complete copy of IS1, and mini-derivatives of 5–6 kb which contained less than a complete copy of IS1. The IncHI1 miniplasmids also contained a portion of the tetracycline resistance determinant from R27 and a replication region related to the RepFIA replicon. Electron microscopic homoduplex studies demonstrated the presence of two other inverted repeat sequences within the miniplasmid that were unrelated to IS1.  相似文献   

2.
The genetic determinants for replication and incompatibility of plasmid R1 were investigated by gene cloning methods, and three types of R1 miniplasmid derivatives were generated. The first, exemplified by plasmid pKT300, consisted of a single BglII endonuclease-generated deoxyribonucleic acid fragment derived from the R1 region that is located between the determinants for conjugal transfer and antibiotic resistance. Two types of miniplasmids could be formed from PstI endonuclease-generated fragments of pKT300. One of these, which is equivalent to miniplasmids previously generated from plasmids R1-19 and R1-19B2, consisted of two adjacent PstI fragments that encode the RepA replication system of plasmid R1. The other type contained a segment of R1, designated the RepD replication region, that is adjacent to the RepA region and that has not been identified previously as having the capacity for autonomous replication. Plasmid R1, therefore, contained two distinct deoxyribonucleic acid segments capable of autonomous replication. The RepA-RepD miniplasmid pKT300 had a copy number about eightfold higher than that of R1 and hence lacked a determinant for the regulation of plasmid copy number. Like R1, it was maintained stably in dividing bacteria. RepA miniplasmids had copy numbers which were two- to fourfold higher than that of R1 (i.e., which were lower than that of pKT300) and were maintained slightly less stably than those of pKT300 and R1. The RepD miniplasmid was not maintained stably in dividing bacteria. Previous experiments have shown that incompatibility of IncFII group plasmids is specified by a plasmid copy control gene. Despite the fact that RepA miniplasmids of R1 were defective in copy control, they nevertheless expressed incompatibility. This suggests that two genes are responsible for plasmid copy control, one that specifies incompatibility and is located on RepA miniplasmids and another that is located outside of, but adjacent to, the RepA replication region. Hybrid plasmids composed of pBR322 and one PstI fragment from the RepA region, P-8, exhibited incompatibility towards R2 and RepA miniplasmids but not the RepD miniplasmid, whereas hybrids composed of pBR322 and the PstI fragment of the RepD region, P-3, exhibited incompatibility towards R1 and the RepD miniplasmid but not RepA miniplasmids. These results indicate that the two replication systems are functionally distinct and that, although the RepA system is the principal replication system of R1, the RepD system also plays a role in the maintenance of this plasmid.  相似文献   

3.
Ten plasmids were isolated as covalently closed circular deoxyribonucleic acid from antibiotic-resistant thermophilic bacteria. Of the 10 plasmids tested, 2 could transform Bacillus subtilis, yielding resistance to specific antibiotics. Plasmid pTB20 (2.8 X 10(6) daltons, approximately 24 copies per chromosome) specifies resistance to tetracycline (Tcr), whereas pTB19 (17.2 X 10(6) daltons, approximately 1 copy per chromosome) renders the host resistant to both kanamycin and tetracycline (KMrTcr). Three plasmids were not self-transmissible. The restriction endonuclease cleavage maps of the two plasmids, pTB19 and pTB20, were constructed. pTB19 and pTB20, both of which were originally isolated from thermophilic bacilli, were tested for stability in B. subtilis. Digestion of pTB19 followed by ligation yielded deletion plasmids pTB512 (Kmr), pTB52 (Tcr), and pTB53 (KmrTcr). Determinants of Kmr, Tcr, and DNA replication were associated with EcoRI fragments R1b (4.2 X 10(6) daltons), R3 (2.8 X 10(6) daltons), and R1a (4.2 X 10(6) daltons), respectively. Restriction endonuclease cleavage maps of pTB51, pTB52, and pTB53 were constructed. Tetracycline resistance of pTB20 was confirmed to be in the EcoRI fragment (1.85 X 10(6) daltons).  相似文献   

4.
By transformation of dnaA null mutant host cells that are suppressed either by an rnh mutation or by chromosomal integration of a mini-R1 plasmid, it was shown that replication of miniplasmids composed of the NR1 minimal replicon had no absolute dependence upon DnaA protein. In addition, the suppression of the dnaA null mutation by the integrated mini-R1, which is an IncFII relative of NR1, was found to be sensitive to the expression of IncFII-specific plasmid incompatibility. This suggests that the integrative suppression by mini-R1 is under the control of the normal IncFII plasmid replication circuitry. Although NR1 replication had no absolute requirement for DnaA, the copy numbers of NR1-derived miniplasmids were lower in dnaA null mutants, and the plasmids exhibited a much reduced stability of inheritance during subculture in the absence of selection. This suggests that DnaA protein may participate in IncFII plasmid replication in some auxiliary way, such as by increasing the efficiency of formation of an open initiation complex at the plasmid replication origin. Such an auxiliary role for DnaA in IncFII replication would be different from that for replication of most other plasmids examined, for which DnaA has been found to be either essential or unimportant.  相似文献   

5.
Pseudomonas putida KT2440 is an ideal soil bacterium for expanding the range of degradable compounds via the recruitment of various catabolic plasmids. In the course of our investigation of the host range of IncP‐7 catabolic plasmids pCAR1, pDK1 and pWW53, we found that the IncP‐7 miniplasmids composed of replication and partition loci were exceptionally unstable in KT2440, which is the authentic host of the archetypal IncP‐9 plasmid pWW0. This study identified ParI, a homologue of ParA family of plasmid partitioning proteins encoded on the KT2440‐specific cryptic genomic island, as a negative host factor for the maintenance of IncP‐7 plasmids. The miniplasmids were destabilized by ectopic expression of ParI, and the loss rate correlated with the copy number of ParB binding sites in the centromeric parS region. Mutations in the conserved ATPase domains of ParI abolished destabilization of miniplasmids. Furthermore, ParI destabilized miniplasmid derivatives carrying the partition‐deficient parA mutations but failed to impact the stability of miniplasmid derivatives with parB mutations in the putative arginine finger. Altogether, these results indicate that ParI interferes with the IncP‐7 plasmid partition system. This study extends canonical partition‐mediated incompatibility of plasmids beyond heterogeneous mobile genetic elements, namely incompatibility between plasmid and genomic island.  相似文献   

6.
7.
A mutant defective in partitioning of composite plasmid Rms201.   总被引:3,自引:2,他引:1       下载免费PDF全文
Escherichia coli harboring mutant plasmids defective in maintenance stability (from the conjugative plasmid Rms201) showed a wide distribution of ampicillin resistance levels, as well as increased frequency of plasmid loss from the cell. The amounts of covalently closed circular deoxyribonucleic acid of mutant plasmid Rms268 and parental plasmid Rms201 per chromosome were 5.3 and 6.1%, respectively. The beta-lactamase activities of strains W3630(Rms268) and W3630(Rms201) were 0.56 and 0.44 U/mg of protein, respectively. Frequency of plasmid loss from W3630(Rms268) was about 0.8 to 1.2% per cell generation, 100 times more than that of the wild-type strain. Ampicillin resistance levels of the colonies harboring the mutant plasmid showed a wide distribution, from low (100 micrograms/ml) to high (1,600 micrograms/ml). A miniplasmid (pMS268) with a mass of 7 X 10(6) daltons and encoding ampicillin resistance was isolated from Rms268. Frequency of pMS268 loss from W3630(pMS268) was about 0.8 to 1.9% per cell generation. W3630(pMS268) also showed a wide range of distribution in the levels of ampicillin resistance. These results indicated that the copies of Rms268 in E. coli did not segregate evenly between daughter cells at cell division and that the gene involved was located on the miniplasmid.  相似文献   

8.
DNA from the replication control region of plasmid NR1 or of the Inc- copy mutant pRR12 was cloned into a pBR322 vector plasmid. These pBR322 derivatives were mutagenized in vitro with hydroxylamine and transformed into Escherichia coli cells that harbored either NR1 or pRR12. After selection for the newly introduced pBR322 derivatives only, those cells which retained the unselected resident NR1 or pRR12 plasmids were examined further. By this process, 134 plasmids with Inc- mutations in the cloned NR1 or pRR12 DNA were obtained. These mutants fell into 11 classes. Two of the classes had plasmids with deletions or insertions in the NR1 DNA and were not examined further. Plasmids with apparent point mutations were classified by examining (i) their ability to reconstitute a functional NR1-derived replicon (Rep+ or Rep-), (ii) the copy numbers of the Rep+ reconstituted replicons, (iii) the cross-reactivity of incompatability among the various mutant classes and parental plasmids, and (iv) the trans effects of the mutants on the copy number and stable inheritance of a coresident plasmid.  相似文献   

9.
Summary Investigations into the genetic determinants for incompatibility of miniplasmids and hybrid replicons constructed from wild type and mutant R1 revealed the presence of an incompatibility function at the junction of two small PstI fragments. These two fragments were not distinguished in earlier experiments since they have the same mobility on agarose gels. This incompatibility function is distinct from other inc-determinants of R1 (Kollek and Goebel 1979; Molin and Nordström, 1980) and independent of R1-type replication. By means of specific deletions and subcloning of DNA fragments, the location of this new inc-determinant could be determined further. After deletion of this inc-determinant from miniplasmids, a 5-fold increase in copy number was observed which could then be reduced to a copy number of about 1 plasmid per cell by complementation with hybrid plasmids having this function. Incompatibility of miniplasmids deleted in this determinant is not reduced, whereas analogous deletions introduced into recombinant plasmids nearly abolish their incompatibility. This determinant seems to exert strong incompatibility only when cloned on pBR322. Therefore, its main function in plasmid R1 is probably restricted to copy control. The appearance of low copy numbers of miniplasmids carrying this determinant and of trans-acting copy control and strong incompatibility exerted by hybrid plasmids is consistently correlated with the presence of a protein of 11,000 molecular weight, synthesized in relatively large amounts in Escherichia coli minicells.  相似文献   

10.
Major heat shock proteins, such as the Escherichia coli DnaK protein, not only are required for cell growth after heat shock but seem to possess important functions in cellular metabolism at normal growth temperatures as well. E. coli delta dnaK52 mutants have severe cellular defects at 30 degrees C, one of which is in cell division (B. Bukau and G. C. Walker, J. Bacteriol, 171:2337-2346, 1989). Here we show that at 30 degrees C, delta dnaK52 mutants have defects in chromosome segregation and in maintenance of low-copy-number plasmids. Fluorescence microscopic analysis revealed that chromosomes were frequently lacking at peripheries of cell filaments of delta dnaK52 mutants and clustered at other locations. In other parts of the cell filaments, chromosomes were apparently normally distributed and they were also present in most of the small cells found in populations of delta dnaK52 cells. These defects might be at the level of DNA replication, since delta dnaK52 mutants have a threshold lower rate of DNA synthesis than wild-type cells. Chromosome segregation defects of delta dnaK52 mutants were also observed in an rnh dnaA mutant background, in which initiation of DNA replication is DnaA-oriC independent. We also found that low-copy-number P1 miniplasmids could not be stably maintained in delta dnaK52 mutants at 30 degrees C. delta par P1 miniplasmids that carry the P1-encoded rep functions required for their replication but lack the P1-encoded par functions required for faithful partitioning of the plasmids during cell division were also unstable in delta dnaK52 mutants. Taken together, our results indicate important, although not absolutely essential, functions for DnaK at 30 degrees C in one or more processes necessary for correct replication and/or partitioning of chromosomes and P1 miniplasmids. Furthermore, we found that P1 miniplasmids were also highly unstable in dnaJ259 mutants, indicating a role for the DnaJ heat shock protein in maintenance of these plasmids.  相似文献   

11.
Twenty-nine antibiotic-resistant isolates of thermophilic bacilli were examined for the presence of covalently closed circular duplex DNA molecules by agarose-gel electrophoresis and caesium chloride-ethidium bromide density gradient centrifugation. Five of the 29 strains tested contained covalently closed circular molecules. Two of the streptomycin-resistant strains contained the same two plasmids: pAB118A of molecular weight 4.9 X 10(6) (7.0 kilobases) and pAB118B of molecular weight 3.0 X 10(6) (4.3 kilobases). Two of the tetracycline-resistant strains each contained a plasmid (pAB124) of molecular weight 2.9 X 10(6) (4.14 kilobases), while a third harboured a small plasmid (pAB128) of molecular weight 2.5 X 10(6) (3.57 kilobases). These plasmids were digested with 19 different restriction endonucleases and the numbers of cleavage sites were determined. Transformation of Bacillus subtilis (168 (Trp-) with purified plasmid DNA indicated that pAB124 conferred tetracycline resistance on the host.  相似文献   

12.
EcoRI restriction endonuclease map of the composite R plasmid NR1.   总被引:41,自引:32,他引:9       下载免费PDF全文
A physical map of the composite R plasmid NR1 has been constructed using specific cleavage of deoxyribonucleic acid (DNA) by the restriction endonuclease EcoR-. Digestion of composite NR1 DNA by EcoRI yields thirteen fragments. The six largest fragments (designated A to F) are from the resistance transfer factor component that harbors the tetracycline resistance genes (RTF-TC). The seven smallest fragments (designated G to M) are from the r-determinants component that harbors the chloramphenicol (CM), streptomycin-spectinomycin (SM/SP), and sulfonamide (SA) resistance genes. The largest fragment of several RTF-TC segregants of NR1 that have deleted the r-determinants component is 0.8 X 10(6) daltons larger than fragment A of composite NR1. Only a part of fragment H of the r-determinants component is amplified in transitioned NR1 DNA in Proteus mirabilis, which consists of multiple, tandem sequences of r-determinants attached to a single copy of the RTF-TC component. Both of these changes can be explained by the locations of the excision sites at the RTF-TC: r-determinants junctions that are involved in the dissociation and reassociation of the RTF-TC and r-determinants components. The thirteen fragments of composite NR1 DNA produced by EcoRI have been ordered using partial digestion techniques. The order of the fragments is: A-D-C-E-F-B-H-I-L-K-G-M-J. The approximate locations of the TC, CM, SM/SP, and SA resistance genes on the EcoRI map were determined by analyzing several deletion mutants of NR1.  相似文献   

13.
The mutations C742T, G746T, G747T in the TP53 gene and G35T in the KRAS gene have been repeatedly found in sectors of human tumors by direct DNA sequencing. The mutation G508A in the HPRT1 gene has been repeatedly found among peripheral T lymphocytes by clonal expansion under selective conditions. To discover if these mutations also occur frequently in normal tissues from which tumors arise, we have developed and validated allele-specific mismatch amplification mutation assays (MAMA) for each mutation. Reconstruction experiments demonstrated linearity in the range of 9-3000 mutant alleles among 3 x 10(6) wild-type alleles. The cumulative distributions of all negative controls established robust detection limits (P<0.05) of 34-125 mutants per 10(6) copies assayed depending on the mutation. One hundred and seventy-seven micro-anatomical samples of approximately (0.5-6)x10(6) tracheal-bronchial epithelial cells from nine non-smokers were assayed representing en toto the equivalent of approximately 1.6 human bronchial trees to the fifth bifurcation. Statistically significant mutant copy numbers were found in 257 of 463 assays. Clusters of mutant copies ranged from 10 to 1000 in 239/257 positive samples. As all five point mutations were detected at mutant fractions of >10(-5) in two or more lungs, we infer that they are mutational hotspots generated in lung epithelial stem cells. As the cancer-associated mutations did not differ in cluster size distribution from the HPRT1 mutation, we infer that none of the mutations conferred a growth advantage to somatic heterozygous clusters or maintenance turnover units. Specific mutants appeared in very large copy numbers, 1000-35,000, in 18/257 positive assays. Various hypotheses to account for the observed cluster size distributions are offered.  相似文献   

14.
Second EcoRI fragment of F capable of self-replication.   总被引:9,自引:5,他引:4       下载免费PDF全文
The cloning of fragments of F' plasmid deoxyribonucleic acid produced by restriction endonuclease EcoRI has revealed that fragment f7, not previously suspected to have replicative properties, is able to replicate autonomously. The ability of f7 to replicate was observed when it was cloned with fragments coding for resistance to either kanamycin or streptomycin and sulfonamide. Such f7 miniplasmids have been obtained from an F'lac+ and two F'gal+ temperature-sensitive mutant plasmids and from the unmutated F plasmid. Plasmids containing both f5 and f7 fragments were also obtained. Expression of resistance to "female-specific" bacteriophages requires that f5 and f7 be present in the same plasmid since cells containing separate f5 and f7 plasmids are not resistant to bacteriophage phi II. f7 plasmids were less stable than miniplasmids containing f5, particularly at fast growth rates. The bearing of these results on the isolation and behavior of temperature-sensitive F mutants is discussed.  相似文献   

15.
Summary Mutants pWS10, pWS11, and pWS12 were derived from an, IncFI group plasmid ColV-K94 by the insertion of a transposon Tn903 (Kmr). These plasmids were all approximately 130 kb in length. The plasmid pWS12 resembled the wild type ColV-K94 in transmissibility, incompatibility and stable maintenance. Cells harboring pWS11 were poor conjugal donors but resistant to the same level of kanamycin as pWS12 containing hosts. In contrast, pWS10 conferred a higher resistance to kanamycin and exhibited reduced incompatibility properties in comparison with pWS12. The higher drug resistance associated with pWS10 appeared to be a consequence of an increase in its copy number and the generation of miniplasmids of varying sizes.Electron microscope analysis of the copy mutant pWS10 revealed that Tn903 was located at a site adjacent to a region 32.6F to 35.3F. The latter region appears to be the primary replicon of ColV-K94 and is homologous with the secondary replicon of F. The insertional mutagenesis with Tn903 brought about an extensive DNA rearrangement including the duplication and translocation of the stems of two inverted repeat structures. The DNA alterations of pWS10 were distinguishable through comparison of its EcoRI digestion patterns with those of pWS11 and pWS12.  相似文献   

16.
Effect of copy number on the expression of bovine growth hormone gene (bGH) was investigated using the copy number mutants such as pKBJ10, pBJ( tet)10, pUBJ10-1, and pUBJ10 plasmids. The cells harboring plasmids below 84 copies/cell did not produced detectable levels of bGH. When the ColE1 replicon was replaced with the mutated ColE1 replicon originated from pUC19 plasmid, the copy number was increased to about 300 copies/cell and bGH production was enhanced by 11.5% (pUBJ10-1) and 12.3% of total cell protein (pUBJ10). A large amount of mRNA caused by increment of copy number would be needed to overcome some inhibitory threshold and might be an important factor for regulating bGH expression.  相似文献   

17.
NIH3T3 cells are widely used in transformation assays and readily take up transfected DNA. A system has been devised using NIH3T3 cells to measure the mutagenic effect of transfected DNA on recipient cell genes. NIH3T3 cells can be mutated to 6-thioguanine resistance at a frequency which suggests that at least a portion of the cells have only one functional copy of the HGPRT gene. They have a low spontaneous background mutation frequency (approximately 1 X 10(-7)). Transfection of three different plasmids into NIH3T3 cells induced 6-thioguanine resistant mutants at frequencies ranging from 3 to 11 fold above background. The mutant phenotype is stable and reversion frequencies of several mutants are less than or equal to 1 X 10(-7). Southern blot analysis of the HGPRT gene in several mutants showed that 4 of 26 mutants (15.4%) had detectable alterations in the structure of the HGPRT gene. Interestingly 3 of the 4 mutants showing rearrangements were obtained by transfection of the HSV-2 morphological transforming region.  相似文献   

18.
Miniplasmids (pKN402 and pKN410) were isolated from runaway-replication mutants of plasmid R1. At 30°C these miniplasmids are present in 20–50 copies per cell of Escherichia coli, whereas at temperatures above 35°C the plasmids replicate without copy number control during 2–3 h. At the end of this period plasmid DNA amounts to about 75% of the total DNA. During the gene amplification, growth and protein synthesis continue at normal rate leading to a drastic amplification of plasmid gene products. Plasmids pKN402 (4.6 Md) and pKN410 (10 Md) have single restriction sites for restriction endonucleases EcoRI and HindIII; in addition plasmid pKN410 has a single BamHI site and carries ampicillin resistance. The plasmids can therefore be used as cloning vectors. Several genes were cloned into these vectors using the EcoRI sites; chromosomal as well as plasmid-coded β-lactamase was found to be amplified up to 400-fold after thermal induction of the runaway replication. Vectors of this temperature-dependent class will be useful in the production of large quantities of genes and gene products. These plasmids have lost their mobilization capacity. Runaway replication is lethal to the host bacteria in rich media. These two properties contribute to the safe use of the plasmids as cloning vehicles.  相似文献   

19.
A small derivative of plasmid R1 was used to integratively suppress a chromosomal dnaA(Ts) mutation. The strain obtained grew normally at 42°C. The integratively suppressed strain was used as recipient for various plasmid R1 derivatives. Plasmid R1 and miniplasmid derivatives of R1 could be established in the strain that carried an integrated R1 replicon, but they were rapidly lost during growth. However, plasmids also carrying ColE1 replication functions were almost completely stably inherited. The integratively suppressed strain therefore allows the establishment of bacteria diploid with respect to plasmid R1 and forms a useful and sensitive system for studies of interaction between plasmid R1 replication functions. Several of the chimeric plasmids caused inhibition of growth at high temperatures. All plasmids that inhibited growth carried one particular PstI fragment from plasmid R1 (the PstI F fragment), and in all cases the growth inhibition could be ascribed to repression of initiation of chromosome replication at 42°C, i.e., they carry a trans-acting switch-off function. Furthermore, the analogous PstI fragments from different copy mutants of plasmid R1 were analyzed similarly, and one mutant was found to lack the switch-off function. The different chimeric plasmids were also tested for their incompatibility properties. All plasmids that carried the switch-off function (and no other plasmids) also carried R1 incompatibility gene(s). Since the PstI F fragment, which is present on all these plasmids, is very small (0.35 × 106), it is suggested that the switch-off regulation of replication (by an inhibitor), incompatibility, and copy number control are governed by the same gene.  相似文献   

20.
A spontaneous rpsL mutant of Thermus thermophilus was isolated in a search for new selection markers for this organism. This new allele, named rpsL1, encodes a K47R/K57E double mutant S12 ribosomal protein that confers a streptomycin-dependent (SD) phenotype to T. thermophilus. Models built on the available three-dimensional structures of the 30S ribosomal subunit revealed that the K47R mutation directly affects the streptomycin binding site on S12, whereas the K57E does not apparently affect this binding site. Either of the two mutations conferred the SD phenotype individually. The presence of the rpsL1 allele, either as a single copy inserted into the chromosome as part of suicide plasmids or in multicopy as replicative plasmids, produced a dominant SD phenotype despite the presence of a wild-type rpsL gene in a host strain. This dominant character allowed us to use the rpsL1 allele not only for positive selection of plasmids to complement a kanamycin-resistant mutant strain, but also more specifically for the isolation of deletion mutants through a single step of negative selection on streptomycin-free growth medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号