首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The effects of ambient O(2) tension on epithelial metabolism and nitric oxide (NO) production (VNO) in the nasal airway were examined in nine healthy volunteers. Nasal VNO, O(2) consumption (VO(2)), and CO(2) production (VCO(2)) were measured during normoxia followed by gradual hypoxia from 21 to 0% O(2) concentration. Nasal VO(2), VCO(2), and respiratory quotient during normoxia were determined to be 1.19 +/- 0.04 ml/min, 1.60 +/- 0.04 ml/min, and 1.35 +/- 0.04, respectively. Hypoxia exposure to the nasal cavity significantly decreased both VCO(2) and VNO [VCO(2): 1.60 +/- 0.04 to 0.96 +/- 0.03 ml/min (P < 0.01), VNO: 530 +/- 15 to 336 +/- 9 nl/min (P < 0.01)]. VNO was reduced commensurately with gradual decline in O(2) tension, and the apparent K(m) value for O(2) was determined to be 23.0 microM. These results indicate that the nasal epithelial cells exchange O(2) and CO(2) with ambient air in the course of their metabolism and that nasal epithelial cells can synthesize NO by using ambient O(2) as a substrate. We conclude that air-borne O(2) diffuses into the epithelium where it may be utilized for either cell metabolism or NO synthesis.  相似文献   

4.
The bioavailability of endothelial nitric oxide (NO) is regulated by transition metals but their mechanisms of action on NO synthesis and degradation are not clearly understood. Using differential pulse amperometry and NO microelectrodes, local NO concentration was measured at the surface of cultured human umbilical vein endothelial cells (HUVECs) stimulated by histamine or thrombin in the presence of transition metal chelators. The agonist-activated NO release required both extracellular Ca2+ and transition metals. In the presence of 1 mM external Ca2+, a low concentration of EGTA (5 microM) inhibited by 40% the NO release from stimulated HUVECs. In the presence of extracellular L-arginine, the inhibitory effect of EGTA was even more marked and, in its absence, it was suppressed by adding exogenous superoxide dismutase. The decrease in NO release induced by the copper chelators, cuprizone and DETC, suggests that extracellular traces of Cu2+ could regulate NO availability.  相似文献   

5.
6.
Prostaglandin production was studied in fetal and adult type II alveolar epithelial cells. Two culture systems were employed, fetal rat lung organotypic cultures consisting of fetal type II cells and monolayer cultures of adult lung type II cells. Dexamethasone, thyroxine, prolactin and insulin, hormones which influence lung development, each reduced the production of prostaglandin E and F alpha by the organotypic cultures. The fetal cultures produced relatively large quantities of prostaglandin E and F alpha and smaller quantities of 6-keto-prostaglandin F1 alpha and thromboxane B2. However, prostaglandin E2 production was predominant. In contrast, the adult type II cells in monolayer culture produced predominantly prostacyclin (6-keto-prostaglandin F1 alpha) along with smaller quantities of prostaglandin E2 and F2 alpha. The type II cells were relatively unresponsive to prostaglandins. Exogenously added prostaglandin E, had no effect on cell growth, and only a minimal effect on cyclic AMP levels in the monolayer cultures.  相似文献   

7.
We have recently found that Syk is widely expressed in lung epithelial cells (EC) and participates in beta1 integrin signaling. In this study, we assessed the role of Syk in regulation of NO production. Stimulation of human bronchial EC line HS-24 by TNF caused an increased expression of inducible nitric oxide synthase (iNOS). Inhibition of Syk using siRNA or piceatannol down-regulated the iNOS expression and reduced NO production. This effect occurred in EC simultaneously stimulated via beta1 integrins, suggesting that TNF and beta1 integrins provide co-stimulatory signals. Inhibition of Syk down-regulated TNF-induced p38 and p44/42 MAPK phosphorylation and nuclear translocation of p65 NF-kappaB. Thus, TNF-induced activation of pro-inflammatory signaling in EC leading to enhanced expression of iNOS and NO production was dependent on Syk. Syk-mediated signaling regulates NO production at least partly via activating the MAPK cascade. Understanding the role of Syk in airway EC may help in developing new therapeutic tools for inflammatory lung disorders.  相似文献   

8.
Patients with interstitial lung diseases, such as idiopathic pulmonary fibrosis (IPF) and bronchopulmonary dysplasia (BPD), suffer from lung fibrosis secondary to myofibroblast-mediated excessive ECM deposition and destruction of lung architecture. Transforming growth factor (TGF)-beta1 induces epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) to myofibroblasts both in vitro and in vivo. Inhaled nitric oxide (NO) attenuates ECM accumulation, enhances lung growth, and decreases alveolar myofibroblast number in experimental models. We therefore hypothesized that NO attenuates TGF-beta1-induced EMT in cultured AEC. Studies of the capacity for endogenous NO production in AEC revealed that endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) are expressed and active in AEC. Total NOS activity was 1.3 pmol x mg protein(-1) x min(-1) with 67% derived from eNOS. TGF-beta1 (50 pM) suppressed eNOS expression by more than 60% and activity by 83% but did not affect iNOS expression or activity. Inhibition of endogenous NOS with l-NAME led to spontaneous EMT, manifested by increased alpha-smooth muscle actin (alpha-SMA) expression and a fibroblast-like morphology. Provision of exogenous NO to TGF-beta1-treated AEC decreased stress fiber-associated alpha-SMA expression and decreased collagen I expression by 80%. NO-treated AEC also retained an epithelial morphology and expressed increased lamellar protein, E-cadherin, and pro-surfactant protein B compared with those treated with TGF-beta alone. These findings indicate that NO serves a critical role in preserving an epithelial phenotype and in attenuating EMT in AEC. NO-mediated regulation of AEC fate may have important implications in the pathophysiology and treatment of diseases such as IPF and BPD.  相似文献   

9.
Measurements of nitric oxide (NO) pulmonary diffusing capacity (DL(NO)) multiplied by alveolar NO partial pressure (PA(NO)) provide values for alveolar NO production (VA(NO)). We evaluated applying a rapidly responding chemiluminescent NO analyzer to measure DL(NO) during a single, constant exhalation (Dex(NO)) or by rebreathing (Drb(NO)). With the use of an initial inspiration of 5-10 parts/million of NO with a correction for the measured NO back pressure, Dex(NO) in nine healthy subjects equaled 125 +/- 29 (SD) ml x min(-1) x mmHg(-1) and Drb(NO) equaled 122 +/- 26 ml x min(-1) x mmHg(-1). These values were 4.7 +/- 0.6 and 4.6 +/- 0.6 times greater, respectively, than the subject's single-breath carbon monoxide diffusing capacity (Dsb(CO)). Coefficients of variation were similar to previously reported breath-holding, single-breath measurements of Dsb(CO). PA(NO) measured in seven of the subjects equaled 1.8 +/- 0.7 mmHg x 10(-6) and resulted in VA(NO) of 0.21 +/- 0.06 microl/min using Dex(NO) and 0.20 +/- 0.6 microl/min with Drb(NO). Dex(NO) remained constant at end-expiratory oxygen tensions varied from 42 to 682 Torr. Decreases in lung volume resulted in falls of Dex(NO) and Drb(NO) similar to the reported effect of volume changes on Dsb(CO). These data show that rapidly responding chemiluminescent NO analyzers provide reproducible measurements of DL(NO) using single exhalations or rebreathing suitable for measuring VA(NO).  相似文献   

10.
Prostaglandin production was studied in fetal and adult type II alveolar epithelial cells. Two culture systems were employed, fetal rat lung organotypic cultures consisting of fetal type II cells and monolayer cultures of adult lung type II cells. Dexamethasone, thyroxine, prolactin and insulin, hormones which influence lung development, each reduced the production of prostaglandin E and Fα by the organotypic cultures. The fetal cultures produced relatively large quantities of prostaglandin E and Fα and smaller quantities of 6-keto-prosta-glandin F and thromboxane B2. However, prostaglandin E2 production was predominant. In contrast, the adult type II cells in monolayer culture produced predominantly prostacyclin (6-keto-prostaglandin F1a) along with smaller quantities of prostaglandin E2 and F. The type II cells were relatively unresponsive to prostaglandins. Exogenously added prostaglandin E2 had no effect on cell growth, and only a minimal effect on cyclic AMP levels in the monolayer cultures.  相似文献   

11.
Kim JM  Kim JS  Jung HC  Song IS  Kim CY 《Helicobacter》2002,7(2):116-128
Background. Nitric oxide (NO) generated by nitric oxide synthase (NOS) is known to be an important modulator of the mucosal inflammatory response. In this study, we questioned whether Helicobacter pylori infection could up‐regulate the epithelial cell inducible NOS (iNOS) gene expression and whether NO production could show polarity that can be regulated by immune mediators. Materials and Methods. Human gastric epithelial cell lines were infected with H. pylori, and the iNOS mRNA expression was assessed by quantitative RT‐PCR. NO production was assayed by determining nitrite/nitrate levels in culture supernatants. To determine the polarity of NO secretion by the H. pylori‐infected epithelial cells, Caco‐2 cells were cultured as polarized monolayers in transwell chambers, and NO production was measured. Results. iNOS mRNA levels were significantly up‐regulated in the cells infected with H. pylori, and expression of iNOS protein was confirmed by Western blot analysis. Increased NO production in the gastric epithelial cells was seen as early as 18 hours postinfection, and reached maximal levels by 24 hours postinfection. The specific MAP kinase inhibitors decreased H. pylori‐induced iNOS and NO up‐regulation. After H. pylori infection of polarized epithelial cells, NO was released predominantly into the apical compartment, and IL‐8 was released predominantly into basolateral compartment. The addition of IFN‐γ to H. pylori‐infected polarized epithelial cells showed a synergistically higher apical and basolateral NO release. Conclusion. These results suggest that apical NO production mediated by MAP kinase in H. pylori‐infected gastric epithelial cells may influence the bacteria and basolateral production of NO and IL‐8 may play a role in the tissue inflammation.  相似文献   

12.
Viral infection generally results in the activation of inducible nitric oxide synthase (iNOS or NOS2) in respiratory epithelial cells by inflammatory cytokines. Activated NOS2 catalyzes synthesis of nitric oxide (NO), which in excess can cause cellular injury. On the other hand, lysophosphatidic acid (LPA), a lipid mediator released from epithelial cells, platelets, and fibroblasts in injured tissue, functions in repair of cell injury. However, details of the mechanism for repair by LPA remain unknown. We demonstrated one effect of LPA favoring repair, specifically inhibition by LPA of cytokine-induced NOS2 protein and mRNA expression by human respiratory epithelial cells in vitro. NO production by LPA-treated, cytokine-stimulated cells was also reduced. These decreases were prevented by Rho kinase inhibition with Y-27632. Thus, down-regulation by LPA of cytokine-induced increases in NOS2 activity is likely to involve a Rho-dependent signaling pathway. Harmful biologic effects of NO in viral respiratory infection might be modified by therapeutic manipulations involving LPA or Rho.  相似文献   

13.
Human airways produce nitric oxide (NO), and exhaled NO increases as expiratory flow rates fall. We show that mixing during exhalation between the NO produced by the lower, alveolar airways (VL(NO)) and the upper conducting airways (VU(NO)) explains this phenomenon and permits measurement of VL(NO), VU(NO), and the NO diffusing capacity of the conducting airways (DU(NO)). After breath holding for 10-15 s the partial pressure of alveolar NO (PA) becomes constant, and during a subsequent exhalation at a constant expiratory flow rate the alveoli will deliver a stable amount of NO to the conducting airways. The conducting airways secrete NO into the lumen (VU(NO)), which mixes with PA during exhalation, resulting in the observed expiratory concentration of NO (PE). At fast exhalations, PA makes a large contribution to PE, and, at slow exhalations, NO from the conducting airways predominates. Simple equations describing this mixing, combined with measurements of PE at several different expiratory flow rates, permit calculation of PA, VU(NO), and DU(NO). VL(NO) is the product of PA and the alveolar airway diffusion capacity for NO. In seven normal subjects, PA = 1.6 +/- 0.7 x 10(-6) (SD) Torr, VL(NO) = 0.19 +/- 0.07 microl/min, VU(NO) = 0.08 +/- 0.05 microl/min, and DU(NO) = 0.4 +/- 0.4 ml. min(-1). Torr(-1). These quantitative measurements of VL(NO) and VU(NO) are suitable for exploring alterations in NO production at these sites by diseases and physiological stresses.  相似文献   

14.
We report the novel observation that medroxyprogesterone acetate (MPA) attenuates the induction by 17beta estradiol (E2) of both nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity in human umbilical vein endothelial cells. Although MPA had no effect on basal NO production or basal eNOS phosphorylation or activity, it attenuated the E2-induced NO production and eNOS phosphorylation and activity. Moreover, we examined the mechanism by which MPA attenuated the E2-induced NO production and eNOS phosphorylation. MPA attenuated the E2-induced phosphorylation of Akt, a kinase that phosphorylates eNOS. Treatment with pure progesterone receptor (PR) antagonist RU486 completely abolished the inhibitory effect of MPA on E2-induced Akt phosphorylation and eNOS phosphorylation. In addition, the effects of actinomycin D were tested to rule out the influence of genomic events mediated by nuclear PRs. Actinomycin D did not affect the inhibitory effect of MPA on E2-induced Akt phosphorylation. Furthermore, the potential roles of PRA and PRB were evaluated. In COS cells transfected with either PRA or PRB, MPA attenuated E2-induced Akt phosphorylation. These results indicate that MPA attenuated E2-induced NO production via an Akt cascade through PRA or PRB in a non-genomic manner.  相似文献   

15.
The study of mucosal immunity has revealed that complex reciprocal interactions occur between intestinal intraepithelial lymphocytes (IEL) and intestinal epithelial cells (IEC). The present study focuses on the induction of inducible nitric oxide (NO) synthase in cocultures of freshly isolated rat IEL and the rat epithelial cell line IEC-18 after the addition of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha, or lipopolysaccharide. When IEL and IEC were separated using Transwell chambers, NO synthesis was not induced, indicating that cell-cell contact was required. Culture of IEC-18 with IEL, even in the absence of inflammatory stimuli such as IL-1beta, resulted in upregulation of class I and II antigens on IEC-18, due to the interferon-gamma (IFN-gamma) that is constitutively produced by IEL. Addition of anti-IFN-gamma antibody to the NO-producing cocultures resulted in inhibition of NO synthesis as well as the upregulation of class I and II antigen expression. These data indicate that IFN-gamma production by IEL conditions IEC for the expression of other components of the inflammatory process.  相似文献   

16.
Inducible nitric oxide synthase (iNOS) activity in colonic epithelial HT-29 cells is modulated by the T-cell-derived cytokines IL-4 and IL-13, but is not affected by IL-10 despite its effect in models of colitis. We studied the effects of these cytokines on nitric oxide (NO) production by colonic tissue. IL-10 and IL-4 but not IL-13 suppressed the NO production and iNOS expression by inflamed tissue and cytokine-stimulated noninflamed tissue from patients with ulcerative colitis, whereas the three cytokines suppressed NO production in cytokine-stimulated biopsies from controls. To examine why colonic biopsies and HT-29 cells respond differently to immunomodulatory cytokines, a coculture of mixed mononuclear monocytes (MMC) and HT-29 cells was studied. Treatment of HT-29 cells with conditioned medium from IFN-γ/LPS-stimulated MMC produced significant amounts of NO, which suggested the presence of an MMC-derived soluble factor modifying epithelial NO production. Pretreatment of IFN-γ/LPS-stimulated MMC with IL-10 and IL-4 but not IL-13 suppressed NO production by HT-29 cells. Interestingly, pretreatment of HT-29 cells with IL-1 receptor antagonist suppressed the IFN-γ/LPS-stimulated MMC-induced NO production. These results suggest that immunomodulatory cytokines might exert an inhibitory effect on NO up-regulation by colonic epithelium via the inhibition of MMC-derived soluble mediators, such as IL-1.  相似文献   

17.
Inducible nitric oxide synthase (iNOS) activity in colonic epithelial HT-29 cells is modulated by the T-cell-derived cytokines IL-4 and IL-13, but is not affected by IL-10 despite its effect in models of colitis. We studied the effects of these cytokines on nitric oxide (NO) production by colonic tissue. IL-10 and IL-4 but not IL-13 suppressed the NO production and iNOS expression by inflamed tissue and cytokine-stimulated noninflamed tissue from patients with ulcerative colitis, whereas the three cytokines suppressed NO production in cytokine-stimulated biopsies from controls. To examine why colonic biopsies and HT-29 cells respond differently to immunomodulatory cytokines, a coculture of mixed mononuclear monocytes (MMC) and HT-29 cells was studied. Treatment of HT-29 cells with conditioned medium from IFN-γ/LPS-stimulated MMC produced significant amounts of NO, which suggested the presence of an MMC-derived soluble factor modifying epithelial NO production. Pretreatment of IFN-γ/LPS-stimulated MMC with IL-10 and IL-4 but not IL-13 suppressed NO production by HT-29 cells. Interestingly, pretreatment of HT-29 cells with IL-1 receptor antagonist suppressed the IFN-γ/LPS-stimulated MMC-induced NO production. These results suggest that immunomodulatory cytokines might exert an inhibitory effect on NO up-regulation by colonic epithelium via the inhibition of MMC-derived soluble mediators, such as IL-1.  相似文献   

18.
The regulation of the reduced-folate transporter (RFT) by nitric oxide (NO) was analyzed in human retinal pigment epithelial (HRPE) cells. NO inhibited specifically and reversibly the uptake of N5-methyltetrahydrofolate by a cGMP-independent mechanism. The inhibition was associated with a decrease in substrate affinity. The NO-induced inhibition was prevented by antioxidants and NO scavengers. Agents capable of modifying thiol groups in proteins inhibited RFT, indicating that the likely mechanism of NO-induced inhibition is via modification of essential thiol groups in this protein. These studies suggest that NO produced during retinal disease may affect the function of RFT in adjacent RPE cells.  相似文献   

19.
The activity of arginase converting arginine into ornithine and urea is of particular interest among many factors regulating NO production in the cells. It is known that by competing with NO-synthase for common substrate (arginine), arginase can affect NO synthesis. In the present work, properties of arginase from the common frog Rana temporaria L. urinary bladder epithelial cells containing the NO-synthase were characterized, and possible contribution of arginase to regulation of NO production by epithelial cells was studied. It has been shown that the enzyme has temperature optimum in the range of 55–60°C, K M for arginine 23 mM, and V max about 10 nmole urea/mg of protein/min, and its activity was efficiently inhibited by (S)-(2-boronoethyl)-L-cysteine (BEC), an inhibitor of arginase, at concentrations from 10?6 to 10?4 M. The comparison of arginase activity in various frog tissues revealed the following pattern: liver > kidney > brain > urinary bladder (epithelium) > heart > testis. The arginase activity in isolated urinary bladder epithelial cells was 3 times higher that in the intact urinary bladder wall. To evaluate the role of arginase in regulation of NO production, the epithelial cells were cultivated in the media L-15 or 199 containing different amounts of arginine; the concentration of NO2 ?, the stable NO metabolites, was de-termined in the cultural fluid after 18–20 h of cell incubation. The vast majority of the produced nitrites are associated with NOS activity, as L-NAME, the NO inhibitor, decreased their accumulation by 77.1% in the L-15 medium and by 80% in the 199 medium. BEC (10?4 M) increased nitrite production by 18.0% ± 2.7% in the L-15 medium and by 24.4% ± 3.5% in the 199 medium (p < 0.05). The obtained data indicate a relatively high activity of arginase in the frog urinary bladder epithelium and its involvement in regulation of NO production.  相似文献   

20.
Kallmann BA  Malzkorn R  Kolb H 《Life sciences》1999,65(17):1787-1794
Exogenous nitric oxide was found to modify the pattern of cytokine secretion from human leukocytes, with similar outcome in 11 different healthy blood donors. Peripheral blood mononuclear cells (PBMC) were stimulated with phytohaemagglutinin (PHA) in the presence of increasing amounts of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP). The NO donor dose-dependently enhanced IL-4 secretion into the supernatant (p<0.01). In contrast, IFNgamma production was not affected while IL-10 levels were slightly decreased. Comparable changes were observed when analysing cytokine mRNA levels by semiquantitative RT-PCR. The differential effect of the NO donor on IL-4 versus IL-10 and IFNgamma gene expression suggests an immunomodulatory potential of NO, which may serve to limit inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号