首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Organisms experience multiple selective agents that can influence phenotypes through heritable and/or plastic changes, often reflecting complex interactions between phenotype and environment. Environmental factors can directly influence phenotypes, but also indirectly affect phenotypic variation when genetic/plastic change in one trait results in correlated genetic/plastic change in another trait. In fishes, body shape is a trait that might be particularly prone to influence from environmental pressures that act on other morphological features. Variation in dissolved oxygen among aquatic environments has a large impact on the size of the gills and brains of fishes. It is likely that dissolved oxygen interacts with other environmental factors to both directly and indirectly influence patterns of body shape variation. We examined effects of dissolved oxygen on body shape variation among populations of an African cichlid fish (Pseudocrenilabrus multicolor) from multiple high- and low-oxygen sites within a single drainage in Uganda. A split-brood laboratory experiment was used to estimate plasticity of gill and brain size, and we used morphometric analyses to identify variation in body shape in F1 offspring. Several analyses enabled us to identify genetic effects among populations, and effects of oxygen acting either directly on body shape or indirectly through its effects on gill and brain size. A large part of the variation in body shape was due to plastic variation in gill size associated with dissolved oxygen. Fish raised under low oxygen had deeper heads and shorter bodies, and this variation was driven by both direct effects of oxygen and indirect effects of gill size variation. Body shape variation in fishes should reflect interacting effects of multiple environmental factors that act directly or indirectly on morphology. Body shape might be particularly difficult to predict when phenotypes are plastic, because changes among populations would occur rapidly and be unrelated to genetic variation.  相似文献   

2.
We performed a common garden experiment to assess the existence of genetic differences on growth and body size between two populations of Poecilia vivipara inhabiting extremes of an environmental gradient caused by water salinity in lagoons of Northern Rio de Janeiro State, Brazil: the Campelo lagoon (freshwater) and Açu lagoon (brackish/saltwater). The two populations show extreme differences in average phenotypes for body size, shape and life history (freshwater populations with smaller body size, lower fecundity and larger reproductive allotment). Pregnant females were brought to the lab and the offspring from both groups were kept in a common recirculating system with freshwater. Standard length and survival were measured weekly over a period of 200 days and growth models were fitted and selected with information criteria. The offspring originally from the brackish water lagoon presented larger asymptotic length, higher maximum growth rate but lower survival than the offspring originally from the freshwater lagoon. Potential confounding variables such as density differences due to mortality and maternal effects (offspring size) were included as covariates in comparisons of growth rates between groups. The results are consistent with phenotypic differences among populations having some genetic basis, and with the existence of a trade-off between growth and maintenance due to the high growth/low survival observed in the group that changed from salt to freshwater. Comparisons of captive and natural populations suggest that the influence of environmental factors, such as salinity, food availability, fish density and predation should also be considered relevant to explain phenotypic variation in this system.  相似文献   

3.
Multiple highly divergent lineages have been identified within Ligia occidentalis sensu lato, a rocky supralittoral isopod distributed along a ~3000 km latitudinal gradient that encompasses several proposed marine biogeographic provinces and ecoregions in the eastern Pacific. Highly divergent lineages have nonoverlapping geographic distributions, with distributional limits that generally correspond with sharp environmental changes. Crossbreeding experiments suggest postmating reproductive barriers exist among some of them, and surveys of mitochondrial and nuclear gene markers do not show evidence of hybridization. Populations are highly isolated, some of which appear to be very small; thus, the effects of drift are expected to reduce the efficiency of selection. Large genetic divergences among lineages, marked environmental differences in their ranges, reproductive isolation, and/or high isolation of populations may have resulted in morphological differences in L. occidentalis, not detected yet by traditional taxonomy. We used landmark‐based geometric morphometric analyses to test for differences in body shape among highly divergent lineages of L. occidentalis, and among populations within these lineages. We analyzed a total of 492 individuals from 53 coastal localities from the southern California Bight to Central Mexico, including the Gulf of California. We conducted discriminant function analyses (DFAs) on body shape morphometrics to assess morphological variation among genetically differentiated lineages and their populations. We also tested for associations between phylogeny and morphological variation, and whether genetic divergence is correlated to multivariate morphological divergence. We detected significant differences in body shape among highly divergent lineages, and among populations within these lineages. Nonetheless, neither lineages nor populations can be discriminated on the basis of body shape, because correct classification rates of cross‐validated DFAs were low. Genetic distance and phylogeny had weak to no effect on body shape variation. The supralittoral environment appears to exert strong stabilizing selection and/or strong functional constraints on body shape in L. occidentalis, thereby leading to morphological stasis in this isopod.  相似文献   

4.
Predation can cause morphological divergence among populations, while ontogeny and sex often determine much of morphological diversity among individuals. We used geometric morphometrics to characterize body shape in the livebearing fish Brachyrhaphis rhabdophora to test for interactions between these three major shape-determining factors. We assessed shape variation between juveniles and adults of both sexes, and among adults for populations from high- and low-predation areas. Shape differed significantly between predation regimes for all juveniles regardless of sex. As males grew and matured into adults, ontogenetic shape trajectories were parallel, thus maintaining shape differences in adult males between predation environments. However, shape of adult females between predation environments followed a different pattern. As females grew and matured, ontogenetic shape trajectories converged so that shape differences were less pronounced between mature females in predator and nonpredator environments. Convergence in female body shape may indicate a trade-off between optimal shape for predator evasion versus shape required for the livebearing mode of reproduction.  相似文献   

5.
The threespine stickleback (Gasterosteus aculeatus) has emerged as an important model organism in evolutionary ecology, largely due to the repeated, parallel evolution of divergent morphotypes found in populations having colonized freshwater habitats. However, morphological divergence following colonization is not a universal phenomenon. We explore this in a large-scale estuarine ecosystem inhabited by two parapatric stickleback demes, each physiologically adapted to divergent osmoregulatory environments (fresh vs. saline waters). Using geometric morphometric analyses of wild-caught individuals, we detected significant differences between demes, in addition to sexual dimorphism, in body shape. However, rearing full-sib families from each deme under controlled, reciprocal salinity conditions revealed no differences between genotypes and highly significant environmental effects. It is also noteworthy that fish from both demes were fully plated, whether found in the wild or reared under reciprocal salinity conditions. Although we found significant heritability for body shape, we also noted significant direct environmental effects for many latent shape variables. Moreover, we found little evidence for diversifying selection acting on body size and shape (Q(ST) ). Nevertheless, uniform compressive variation did exceed neutral expectations, yet despite evidence of both allometry and genetic correlation with body length, we detected no correlated signatures of selection. Taken together, these results suggest that much of the morphological divergence observed in this system is the result of plastic responses to environmental variation rather than adaptive differentiation.  相似文献   

6.
This paper demonstrates the contribution of both genetic and environmental effects on cultured European sea bass shape. We used the progeny of five populations of sea bass, in a partly diallel design, to investigate the genetics of shape (estimated with geometric morphometrics) in European sea bass. This was done using a common garden experiment with microsatellite markers assignment to parents and populations to avoid confusion between genetic and environmental effects. Additionally, one of the populations was studied over four different aquaculture facilities to investigate the effects of environment on shape. For the first time in this species, shape‐related traits were linked with genetic variation. The first relative warp analysis axis clearly differentiated rearing sites, demonstrating that the main shape/weight effects are related to culturing conditions, thereby accounting for ecomorphologically related differences. The second axis strongly differentiated groups by parental origins; there was a good correlation between shape differences and geographic distances between broodstock sampling locations. High heritabilities of axes scores (0.40–0.55) showed high genetic variation for shape within populations. This study shows that variation in shape has a high genetic component in sea bass, both at the population level and within populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 427–436.  相似文献   

7.
Minnows of the genus Phoxinus are promising candidates to investigate adaptive divergence, as they inhabit both still and running waters of a variety of altitudes and climatic zones in Europe. We used landmark‐based geometric morphometric methods to quantify the level of morphological variability in Phoxinus populations from streams and lakes of Northern Italy and the Danube basin. We analyzed body shape differences of populations in the dorsal, lateral, and ventral planes, using a large array of landmarks and semilandmarks. As the species identification of Phoxinus on morphological characters is ambiguous, we used two mitochondrial genes to determine the genetic background of the samples and to ensure we are comparing homogenous groups. We have found significant body shape differences between habitats: Minnow populations inhabiting streams had a deeper body and caudal peduncle and more laterally inserted pectoral fins than minnows inhabiting lakes. We have also found significant body shape differences between genetic groups: Italian minnows had deeper bodies, deeper and shorter caudal peduncles, and a shorter and wider gape than both groups from the Danube. Our results show that the morphology of Phoxinus is highly influenced by habitat and that body shape variation between habitats was within the same range as between genetic groups. These morphological differences are possibly linked to different modes of swimming and foraging in the respective habitats and are likely results of phenotypic plasticity. However, differences in shape and interlandmark distances between the groups suggest that some (though few) morphometric characters might be useful for separating Phoxinus species.  相似文献   

8.
Environmental pressures may vary over the geographic range of a species, exposing subpopulations to divergent functional demands. How does exposure to competing demands shape the morphology of species and influence the divergence of populations? We explored these questions by performing selection experiments on juveniles of the Hawaiian goby Sicyopterus stimpsoni, an amphidromous fish that exhibits morphological differences across portions of its geographic range where different environmental pressures predominate. Juvenile S. stimpsoni face two primary and potentially opposing selective pressures on body shape as they return from the ocean to freshwater streams on islands: (1) avoiding predators in the lower reaches of a stream; and (2) climbing waterfalls to reach the habitats occupied by adults. These pressures differ in importance across the Hawaiian Islands. On the youngest island, Hawai'i, waterfalls are close to shore, thereby minimizing exposure to predators and placing a premium on climbing performance. In contrast, on the oldest major island, Kaua'i, waterfalls have eroded further inland, lengthening the exposure of juveniles to predators before migrating juveniles begin climbing. Both juvenile and adult fish show differences in body shape between these islands that would be predicted to improve evasion of predators by fish from Kaua'i (e.g., taller bodies that improve thrust) and climbing performance for fish from Hawai'i (e.g., narrower bodies that reduce drag), matching the prevailing environmental demand on each island. To evaluate how competing selection pressures and functional tradeoffs contribute to the divergence in body shape observed in S. stimpsoni, we compared selection imposed on juvenile body shape by (1) predation by the native fish Eleotris sandwicensis versus (2) climbing an artificial waterfall (~100 body lengths). Some variables showed opposing patterns of selection that matched predictions: for example, survivors of predation had lower fineness ratios than did control fish (i.e., greater body depth for a given length), whereas successful climbers had higher fineness ratios (reducing drag) than did fish that failed. However, most morphological variables showed significant selection in only one treatment rather than opposing selection across both. Thus, functional tradeoffs between evasion of predators and minimizing drag during climbing might influence divergence in body shape across subpopulations, but even when selection is an important contributing mechanism, directly opposite patterns of selection across environmental demands are not required to generate morphological divergence.  相似文献   

9.
An important step in diagnosing local adaptation is the demonstration that phenotypic variation among populations is at least in part genetically based. To do this, many methods experimentally minimize the environmental effect on the phenotype to elucidate the genetic effect. Minimizing the environmental effect often includes reducing possible environmental maternal effects. However, maternal effects can be an important factor in patterns of local adaptation as well as adaptive plasticity. Here, we report the results of an experiment with males from two populations of the poeciliid fish, Heterandria formosa, designed to examine the relative influence of environmental maternal effects and environmental effects experienced during growth and development on body morphology, and, in addition, whether the balance among those effects is unique to each population. We used a factorial design that varied thermal environment and water chemistry experienced by mothers and thermal environment and water chemistry experienced by offspring. We found substantial differences between the two populations in their maternal and offspring norms of reaction of male body morphology to differences in thermal environment and water chemistry. We also found that the balance between maternal effects and postparturition environmental effects differed from one thermal regime to another and among traits. These results indicate that environmental maternal effects can be decidedly population‐specific and, as a result, might either contribute to the appearance of or blur evidence for local adaptation. These results also suggest that local adaptation might also occur through the evolution of maternal norms of reaction to important, and varying, environmental factors.  相似文献   

10.
The relationship between genetic differentiation and phenotypic plasticity can provide information on whether plasticity generally facilitates or hinders adaptation to environmental change. Here, we studied wing shape variation in a damselfly (Lestes sponsa) across a latitudinal gradient in Europe that differed in time constraints mediated by photoperiod and temperature. We reared damselflies from northern and southern populations in the laboratory using a reciprocal transplant experiment that simulated time-constrained (i.e. northern) and unconstrained (southern) photoperiods and temperatures. After emergence, adult wing shape was analysed using geometric morphometrics. Wings from individuals in the northern and southern populations differed significantly in shape when animals were reared in their respective native environment. Comparing wing shape across environments, we found evidence for phenotypic plasticity in wing shape, and this response differed across populations (i.e. G × E interactions). This interaction was driven by a stronger plastic response by individuals from the northern population and differences in the direction of plastic wing shape changes among populations. The alignment between genetic and plastic responses depended on the specific combination of population and rearing environment. For example, there was an alignment between plasticity and genetic differentiation under time-constrained, but not under non-time-constrained conditions for forewings. We thus find mixed support for the hypothesis that environmental plasticity and genetic population differentiation are aligned. Furthermore, although our laboratory treatments mimicked the natural climatic conditions at northern and southern latitudes, the effects of population differences on wing shape were two to four times stronger than plastic effects. We discuss our results in terms of time constraints and the possibility that natural and sexual selection is acting differently on fore- and hindwings.  相似文献   

11.
Variation in body size, growth and life history traits of ectotherms along latitudinal and altitudinal clines is generally assumed to represent adaptation to local environmental conditions, especially adaptation to temperature. However, the degree to which variation along these clines is due to adaptation vs plasticity remains poorly understood. In addition, geographic patterns often differ between females and males – e.g. sexual dimorphism varies along latitudinal clines, but the extent to which these sex differences are due to genetic differences between sexes vs sex differences in plasticity is poorly understood. We use common garden experiments (beetles reared at 24, 30 and 36°C) to quantify the relative contribution of genetically‐based differentiation among populations vs phenotypic plasticity to variation in body size and other traits among six populations of the seed‐feeding beetle Stator limbatus collected from various altitudes in Arizona, USA. We found that temperature induces substantial plasticity in survivorship, body size and female lifetime fecundity, indicating that developmental temperature significantly affects growth and life history traits of S. limbatus. We also detected genetic differences among populations for body size and fecundity, and genetic differences among populations in thermal reaction norms, but the altitude of origin (and hence mean temperature) does not appear to explain these genetic differences. This and other recent studies suggest that temperature is not the major environmental factor that generates geographic variation in traits of this species. In addition, though there was no overall difference in plasticity of body size between males and females (when averaged across populations), we did find that the degree to which dimorphism changed with temperature varied among populations. Consequently, future studies should be extremely cautious when using only a few study populations to examine environmental effects on sexual dimorphism.  相似文献   

12.
Interpopulation differences in body size are of common occurrence in vertebrates, but the relative importance of genetic, maternal, and environmental effects as causes of observed differentiation have seldom been assessed in the wild. Gigantism in pond nine‐spined sticklebacks (Pungitius pungitius Linnaeus, 1758) has been repeatedly observed, but the quantitative genetic basis of population divergence in size has remained unstudied. We conducted a common garden experiment – using ‘pure’ and reciprocal crosses between two populations (‘giant’ pond versus ‘normal’ marine) – to test for the relative importance of additive genetic, non‐additive genetic, and maternal effects on body size after 11 months of growth in the laboratory. We found that body size difference between the two populations in laboratory conditions owed mainly to additive genetic effects, and only to a minor degree to maternal effects. Furthermore, the weak maternal effects were seen only in the offspring of ‘giant’ mothers, and appeared to be mediated through differences in egg size. Thus, the results suggest that gigantism in pond populations of P. pungitius is based on the effects of additively acting genes, rather than to direct environmental induction, or maternal or non‐additive gene action. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 521–528.  相似文献   

13.
Previous studies of Partula land snails from the Society Islands, French Polynesia, have shown that there can be striking differences in shell shape, colour and banding pattern between nearby populations, even in the absence of any obvious geographical barriers to the movement of snails, or environmental gradients. Elsewhere, there may be relative uniformity over large distances. Analysis of a mitochondrial gene from Partula taeniata (M?rch) shows a similar pattern. The relative frequencies of two mitochondrial haplotypes change abruptly over small distances, seemingly independent of the environment. Although the transition roughly coincides with clines in the frequencies of some morphological characteristics, it appears to be unrelated to others. It is likely that many of the differences accumulated while populations were isolated from one another, through the effects of random genetic drift and selection. Isolation of populations may have occurred as a result of demographic changes, or during the process of colonization if occasional long-distance migrants establish populations ahead of the main invading front. Current genetic drift, even without restrictions to gene flow, may contribute to genetic patchiness on a small scale, although it is likely that conspicuous characteristics such as shell colours and banding patterns are also influenced by selection.  相似文献   

14.
A common-garden experiment was conducted on larvae to test for genetic differences in body shape among populations of Atlantic cod ( Gadus morhua ). Offspring from four north-west Atlantic regions were reared from hatching to postmetamorphosis at two temperatures (7 ± 1 °C and 11 ± 1 °C) and two food levels (1500 and 4500 prey L−1). Body shape differed between populations and treatments. Population differences were greatest between south-west Scotian Shelf cod and those further north; the former were characterized by a deeper body, larger head, and longer caudal peduncle than cod from the other populations. Significant differences were also observed between two putative populations on the south-west Scotian Shelf, suggesting genetic divergence between spawning aggregations at small spatial scales (< 100 km). Temperature and food supply also influenced body shape, with the effect of the former being more pronounced. Individuals reared at the higher temperature or food level had a deeper body and a larger head than those reared at the lower temperature or food supply. Phenotypic responses to changes in the rearing environment also differed among populations, indicating genetic differences in phenotypic plasticity. Differences between populations in morphology and in phenotypic plasticity suggest genetic divergence at both large (> 1000 km) and small (< 100 km) spatial scales. The genetic differences at large spatial scales counteracted the expected effects of temperature differences in the wild, suggesting countergradient variation in morphology among these populations.  © 2006 Her Majesty the Queen in Right of Canada. Journal compilation © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 351–365.  相似文献   

15.
The meadow vole, Microtus pennsylvanicus , is the most widely distributed Microtus species in North America. Across its range, it shows marked demographic differences, experiences a large range of climatic conditions, and varies considerably in body size and life-history characteristics. To study the genetic basis of the geographic variation in size and life history of this species, we subjected three populations, one from central Canada and two from eastern Canada, to quantitative genetic analysis in the lab. We studied the variance and covariance of several size and growth variables as well as age and size at maturity by means of population crosses, full-sib analysis, and parent-offspring regressions. We found that the phenotypic differences among these populations are almost entirely due to environmental effects. However, within populations, additive genetic and maternal effects explain most of the variation. We discuss possible explanations for the lack of genetic differences among the populations and speculate that a similar reaction norm is maintained in all populations through heterogeneity in the temporal or spatial environment that the populations experience. The heterogeneity may be mediated through population density fluctuations, climatic variation, or variation in site productivity. Thus, we hypothesize that M. pennsylvanicus has evolved to be the best in all possible worlds rather than in one actual world. This study highlights the crucial importance of maternal and environmental effects on the size, growth, and life history of small rodents.  相似文献   

16.
Populations of annual killifish of the genus Nothobranchius occur in patchily distributed temporary pools in the East African savannah. Their fragmented distribution and low dispersal ability result in highly structured genetic clustering of their populations. In this study, we examined body shape variation in a widely distributed species, Nothobranchius orthonotus with known phylogeographic structure. We tested whether genetic divergence of major mitochondrial lineages forming two candidate species is congruent with phenotypic diversification, using linear and geometric morphometry analyses of body shape in 23 wild populations. We also conducted a common‐garden experiment with two wild‐derived populations to control for the effect of local environmental conditions on body shape. We identified different allometric trajectories for different mitochondrial lineages and candidate species in both sexes. However, in a principal components analysis of population‐level body shape, the separation among mitochondrial lineages was incomplete. Higher similarity of mitochondrial lineages belonging to different candidate species than that of same candidate species prevented distinction of the two candidate species on the basis of body shape. Analysis at the individual level demonstrated that N. orthonotus express high intrapopulation variability, with major overlap among individuals from all populations. In conclusion, we suggest that N. orthonotus be considered as a single species with an extensive geographic range, strong population genetic structure and high morphological variability.  相似文献   

17.
Lake and stream habitats pose a variety of challenges to fishes due to differences in variables such as water velocity, habitat structure, prey community, and predator community. These differences can cause divergent selection on body size and/or shape. Here, we measured sex, age, length, and eight different morphological traits of the blackstripe topminnow, Fundulus notatus, from 19 lake and stream populations across four river drainages in central Illinois. Our goal was to determine whether size and shape differed consistently between lake and stream habitats across drainages. We also considered the effects of age and sex as they may affect size and morphology. We found large differences in body size of age 1 topminnows where stream fish were generally larger than lake fish. Body shape mainly varied as a function of sex. Adult male topminnows had larger morphological traits (with the exception of body width) than females, in particular longer dorsal and anal base lengths. Subtle effects of habitat were present. Stream fish had a longer dorsal fin base than lake fish. These phenotypic patterns may be the result of genetic and/or environmental variation. As these lakes are human‐made, the observed differences, if genetic, would have had to occur relatively rapidly (within about 100 years). © 2013 The Linnean Society of London  相似文献   

18.
We compared ancestral anadromous-marine and nonmigratory, stream-resident threespine stickleback (Gasterosteus aculeatus) populations to examine the outcome of relaxed selection on prolonged swimming performance. We reared marine and stream-resident fish from two locations in a common environment and found that both stream-resident populations had lower critical swimming speeds (U(crits) ) than marine populations. F1 hybrids from the two locations displayed significant differences in dominance, suggesting that the genetic basis for variation in U(crit) differs between locations. To determine which traits evolved in conjunction with, and may underlie, differences in performance capacity we measured a suite of traits known to affect prolonged swimming performance in fish. Although some candidate traits did not evolve (standard metabolic rate and two body shape traits), multiple morphological (pectoral fin size, shape, and four body shape measures) and physiological (maximum metabolic rate; MMR) traits evolved in the predicted direction in both stream-resident populations. However, data from F1 hybrids suggested that only one of these traits (MMR) had dominance effects similar to those of U(crit) in both locations. Overall, our data suggest that reductions in prolonged swimming performance were selected for in nonmigratory populations of threespine stickleback, and that decreases in MMR may mediate these reductions in performance.  相似文献   

19.
Truss analysis and length measurements were made on 168 striped red mullet Mullus surmuletus. Multivariate statistical analyses with principal component analysis and partial redundancy analysis (pRDA) were used on these measurements to evaluate the influence of maturity, sex and geographical area distribution on body shape. Truss measurements were important to quantify and discriminate changing body shape, presumably due to changing environmental conditions. Sexual dimorphism was not observed and juveniles could be distinguished from adults based on their body shape. More importantly, M. surmuletus occurring in different geographical areas could be differentiated using this method. Based on pRDA, a significant difference of head morphological dimensions was observed between populations occurring in the eastern English Channel and those occurring in the Bay of Biscay, suggesting that fish from these areas could represent two subpopulations.  相似文献   

20.
Two reproductive types of kokanee are found in Okanagan Lake, British Columbia: one form that spawns in streams, and another that spawns approximately 2–4 weeks later along beaches of the lake. We examined the levels and patterns of genetic and morphometric variation among three populations (1 beach and 2 stream populations) to better understand life history differentiation. We assayed allozyme variation at 74 loci and identified 15 P0.095 loci. Average FST was 0.041 among the three samples; the two stream-spawning populations grouped together in genetic distance analyses. We examined multivariate morphometric variation and fin size/shape variation using 35 truss characters. Populations did not sort morphologically by spawning type in principal component and relative warp analyses. Instead both analyses indicated that one stream-spawning population (Peachland Creek) was significantly more robust and had shallower caudal fins in comparison to the other samples. Second, clear multivariate shape differences between males and females were identified involving jaw size, mid-body dimensions, and caudal fin shape. A simple bivariate plot of tail `forkness' against fork length demonstrated that males had more forked tails and females had flattened tails. Level of differentiation of secondary sexual characteristics did not vary between the spawning types, although the beach-spawning population and one stream-spawning population did not show the strong, gender-discriminating variability in tail forkness. Although these two reproductive life history types of kokanee form discrete genetic groups, environmental differences are apparently insufficient to effect consistent differences in body shape, or fin size and shape between stream and beach-spawning morphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号