首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skin cutaneous melanoma (SKCM) is one of the most destructive skin malignancies and has attracted worldwide attention. However, there is a lack of prognostic biomarkers, especially tumour microenvironment (TME)-based prognostic biomarkers. Therefore, there is an urgent need to investigate the TME in SKCM, as well as to identify efficient biomarkers for the diagnosis and treatment of SKCM patients. A comprehensive analysis was performed using SKCM samples from The Cancer Genome Atlas and normal samples from Genotype-Tissue Expression. TME scores were calculated using the ESTIMATE algorithm, and differential TME scores and differentially expressed prognostic genes were successively identified. We further identified more reliable prognostic genes via least absolute shrinkage and selection operator regression analysis and constructed a prognostic prediction model to predict overall survival. Receiver operating characteristic analysis was used to evaluate the diagnostic efficacy, and Cox regression analysis was applied to explore the relationship with clinicopathological characteristics. Finally, we identified a novel prognostic biomarker and conducted a functional enrichment analysis. After considering ESTIMATEScore and tumour purity as differential TME scores, we identified 34 differentially expressed prognostic genes. Using least absolute shrinkage and selection operator regression, we identified seven potential prognostic biomarkers (SLC13A5, RBM24, IGHV3OR16-15, PRSS35, SLC7A10, IGHV1-69D and IGHV2-26). Combined with receiver operating characteristic and regression analyses, we determined PRSS35 as a novel TME-based prognostic biomarker in SKCM, and functional analysis enriched immune-related cells, functions and signalling pathways. Our study indicated that PRSS35 could act as a potential prognostic biomarker in SKCM by investigating the TME, so as to provide new ideas and insights for the clinical diagnosis and treatment of SKCM.  相似文献   

2.
3.
4.
Modern biology requires modern genetic concepts equally valid for all discovered mechanisms of inheritance, either “canonical” (mediated by DNA sequences) or epigenetic. Applying basic genetic terms such as “gene” and “allele” to protein hereditary factors is one of the necessary steps toward these concepts. The basic idea that different variants of the same prion protein can be considered as alleles has been previously proposed by Chernoff and Tuite. In this paper, the notion of prion allele is further developed. We propose the idea that any prion allele is a bimodular hereditary system that depends on a certain DNA sequence (DNA determinant) and a certain epigenetic mark (epigenetic determinant). Alteration of any of these 2 determinants may lead to establishment of a new prion allele. The bimodularity principle is valid not only for hereditary prions; it seems to be universal for any epigenetic hereditary factor.  相似文献   

5.
The mechanisms underlying regional amyloid beta-protein (Abeta) deposition in brain remain unclear. Here we show that assembly of hereditary variant Dutch- and Italian-type Abetas, and Flemish-type Abeta was accelerated by GM3 ganglioside, and GD3 ganglioside, respectively. Notably, cerebrovascular smooth muscle cells, which compose the cerebral vessel wall at which the Dutch- and Italian-type Abetas deposit, exclusively express GM3 whereas GD3 is upregulated in the co-culture of endothelial cells and astrocytes, which forms the cerebrovascular basement membrane, the site of Flemish-type Abeta deposition. Our results suggest that regional Abeta deposition is induced by the local gangliosides in the brain.  相似文献   

6.
7.
Melanoma is the most aggressive form of skin cancer with rising incidence and morbidity. Despite advances in treatment, the 10‐yr survival for patients with metastatic disease is less than 10%. During the past few years, ongoing research on different epigenomic aberrations in melanoma has catalyzed better understanding of its pathogenesis and identification of new therapeutics. In our review, we will focus on the role of histone variants, key epigenetic players in melanoma initiation and progression. Specifically, incorporation of histone variants enables additional layers of chromatin structure, and here, we will describe how alterations in this epigenetic behavior impact melanoma.  相似文献   

8.
9.
Induction of transient thermotolerance by heat or other cytotoxic stressors has been reported to confer a moderate degree of drug resistance to tumor cells in vitro. In this study, a genetically stable, heat-resistant mouse B16 melanoma variant (W-H75) was tested for its sensitivity to various cytotoxic and antiproliferative agents. The heat-resistant W-H75 cells displayed a moderate two- to threefold resistance to doxorubicin, VP-16, VM-26, colchicine, cis-dichlorodiammineplatinum(II), HgCl2, and CdCl2. Marginal resistance to 4'(9-acridinylamino)methanesulfon-m-anisidide vinblastine, 1,3-bis(2-chloroethyl)-1-nitro-sourea, and NaAsO2 was observed, while no difference in sensitivity to the anticancer drugs, actinomycin D and camptothecin, was observed. Although W-H75 cells were generally more resistant than the parental cells to most of the agents that were tested, they were collaterally sensitive to the antimetabolites methotrexate and 6-mercaptopurine. Resistance of the W-H75 cells to epipodophyllotoxins and anthracyclines was not due to differences in steady-state drug accumulation. For the epipodophyllotoxin VP-16, resistance may be related to a relative decrease in the number of drug-induced DNA strand breaks in W-H75 cells. However, no difference in DNA strand breakage was observed between W-H75 and parental cells which were treated with doxorubicin, suggesting that resistance to this drug occurred by a different mechanism. The possible involvement of glutathione and glutathione S-transferase in resistance was also investigated. The glutathione content in W-H75 cells was 35% higher than that in the parental line. However, glutathione S-transferase activity appeared to be identical in both cell lines. Two other heat-resistant B16 melanoma variants, B-H103 and R-H92, were also tested for sensitivity to doxorubicin and VP-16. In contrast to the W-H75 cells, these two heat-resistant variants were hypersensitive to doxorubicin. The B-H103 cells were also hypersensitive to VP-16. This study suggests that selection for cellular resistance to heat may result in cells that have an altered sensitivity to drugs.  相似文献   

10.
Melanoma occurring spontaneously in Xiphophorus fish hybrids is a model system in which involvement of cellular oncogenes and multi-step regulation of their expression have been identified by classical genetics. The macromelanophore gene in platyfish (Xiphophorus maculatus) is a sex-linked codominant gene which determines the black spot patterns of macromelanophores in the skin. The macromelanophore locus includes a cellular oncogene which potentially induces neoplasms of the pigment cells. Expression of the oncogene is regulated by a multi-step genetic process and brings about a characteristic phenotype associated with pigment cell differentiation at each step. The multi-step genetic regulation of oncogene expression can be recognized by interspecific hybridization of the platyfish with swordtails (Xiphophorus helleri) which have not developed the macromelanophore gene. When platyfish are hybridized with swordtails, the F1 offspring carrying this gene develop a preneoplastic state. When the F1 offspring are back-crossed to swordtails, the backcross offspring develop a heritable form of melanoma with a characteristic inheritance pattern. This heritable form of melanoma occurs at an early age and has a well differentiated character. Thus, the first and second steps of oncogene expression bring about a preneoplastic state in the F1 offspring and a heritable form of melanoma in the backcross offspring, respectively. These steps may be due to progressive substitution of platyfish chromosomes with swordtail chromosomes in germ line cells, resulting in a progressive reduction of the dosage of regulatory genes in the platyfish genome. The third step of oncogene expression brings about a sporadic form of melanoma in the hybrid offspring bearing the preneoplastic state and heritable form of melanoma spontaneously or through induction by carcinogens. This form of melanoma has a poorly differentiated character. The incidence of this form is considerably enhanced by aging in adult life, thus exhibiting age-specific incidence. It is likely that this step is due to mutational events in regulatory genes, which occur in somatic cells following chromosome substitution in germ line cells by hybridization. The albino gene enhances the malignancy of the two forms of melanoma and the incidence of the sporadic form of melanoma, possibly by suppressing the differentiation of transformed pigment cells. These facts and speculations are summarized in Fig. 6. The molecular identification of oncogenes in this melanoma system and their transfer into the swordtail eggs may provide a useful means for studying oncogene expression during development, growth, and aging of animals.  相似文献   

11.
Reversible tyrosine phosphorylation of proteins is a key regulatory mechanism to steer normal development and physiological functioning of multicellular organisms. Phosphotyrosine dephosphorylation is exerted by members of the super-family of protein tyrosine phosphatase (PTP) enzymes and many play such essential roles that a wide variety of hereditary disorders and disease susceptibilities in man are caused by PTP alleles. More than two decades of PTP research has resulted in a collection of PTP genetic variants with corresponding consequences at the molecular, cellular and physiological level. Here we present a comprehensive overview of these PTP gene variants that have been linked to disease states in man. Although the findings have direct bearing for disease diagnostics and for research on disease etiology, more work is necessary to translate this into therapies that alleviate the burden of these hereditary disorders and disease susceptibilities in man.  相似文献   

12.
The melanoma is one of the most dangerous forms of skin diseases. It may spread to other parts of the body and cause serious illness and death. Early detection and diagnosis are crucial. However, the systemic expression analysis for the different staging of melanoma is still lacking to date. In this study, we analyzed the gene expression profiles of the different staging of melanoma by the differential expression analysis and random forest analysis. First, the results of the principal component analysis showed that the clustering of primary tumor samples, normal samples, and pigment nevus samples got closer, while the clustering of tumor metastatic samples and normal samples was far away. Moreover, the gene expression of tumor metastasis stage and the initial stage had obvious differences. Almost 426 genes identified had differential expression. The functional enrichment of differentially expressed genes was associated with the epidermal cell differentiation, epidermis development, and the keratinocyte differentiation. Taken together, our findings identified the differentially expressed signatures between primary melanoma and metastatic melanoma. Our results would provide the potential mechanisms of melanoma.  相似文献   

13.
14.
15.
Drop coating deposition Raman (DCDR) spectroscopy is used to obtain high-quality normal Raman spectra from small volumes (10 microl) of dilute insulin solutions (3-400 microM) for spectral identification and chromatographic detection. The results are used to demonstrate the spectroscopic classification (identification) of three natural insulin variants-human, bovine, and porcine-that differ by between one and three amino acid residues. DCDR measurements were performed on solutions obtained from reverse phase high-performance liquid chromatography (RP-HPLC) eluent fractions, either before or after lyophilization. Classification is demonstrated using replicate DCDR measurements, followed by normalized Savitsky-Golay second derivative preprocessing and partial least squares training with either leave-one-out or batch-to-batch testing.  相似文献   

16.
In this study, various ethanol- and temperature-induced molecular dynamics simulations were conducted to investigate the conformational changes of several human lysozyme variants (I56T, D67H, and T70N) associated with hereditary systemic amyloidosis. The results show that these variants are all more sensitive to conditions affecting the structural integrity of this protein. The structural analyses of these variants reveal a high population of more unstable beta-domain and distorted hydrophobic core compared to the wild-type human lysozyme, particularly for the two natural amyloidogenic variants D67H and I56T. For the D67H variant, the distance between the mass centers of residues 54 and 67 was found to elongate as a result of the destruction of the hydrogen-bonding network stabilizing the two long loops in the beta-domain. It further accelerates the unfolding of this variant, starting from the hydrophobic core between the alpha- and beta-domains. For the I56T variant, the introduction of a hydrophilic residue in the hydrophobic core directly destroys the native contacts in the alpha-beta interface, leading to fast unfolding. The present results are consistent with the previous hypothesis suggesting that the distortion of the hydrophobic core at the alpha-beta interface putatively results in the formation of the initial "seed" for amyloid fibrils.  相似文献   

17.
Summary Five patients with hereditary elliptocytosis (HE) from two unrelated black families were studied. The patients had prominent elliptocytosis and a decreased erythrocyte resistance to heat treatment. In one infant blood smears showed elliptocytosis and poikilocytosis; his erythrocytes fagmented at a lower temperature than those of his mother and sister, both having typical mild HE. Defective dimer-dimer association was present in all patients. Limited tryptic digestion of spectrin and subsequent analysis by one-and two-dimensional electrophoresis revealed a similar and reproducible decrease in the 80,000-dalton peptide (I domain) and the comcomitant appearance of a 46,000-dalton peptide. All the patients had the polymorphism of the spectrin II domain commonly observed in black populations. In addition, modifications relative to the III domain were detected; similar variants were found in one black control subject out of 136 and are likely related to a genetic polymorphism of the III domain. No differences were observed between the peptide patterns in the infant with poikilocytosis and those of his HE sister and mother.  相似文献   

18.
The ability of melanocyte stimulating hormone (MSH), adrenocorticotropic hormone (ACTH), and prostaglandin E1 (PGE1) to stimulate the accumulation of cyclic AMP was examined in intact mouse melanoma cells of varying metastatic potential. F1 cells (low metastatic potential) had significantly greater cyclic AMP levels in response to all three hormones than F5 (intermediate metastatic potential) and F10 (high metastatic potential) cells. The ranking of the response was as follows: MSH, F1 greater than F5 greater than F10, ACTH, F1 greater than F5 greater F10, PGE, F1 greater than F10 greater F5. In contrast to the above, the degree of hormonal stimulation of adenylate cyclase in broken cell preparations was virtually identical in all three melanoma cell lines. Control enzyme activity was depressed in both F5 and F10 relative to F1. The conflicting results between studies of intact vs. broken cell preparations could not be explained by increased cyclic AMP phosphodiesterase activity in F5 and F10 cells. We conclude that as the melanoma cells increase in metastatic potential, there is a significant loss in the ability of their cyclic AMP system to respond appropriately to hormonal stimuli.  相似文献   

19.
Previous biological studies showed evidence of a genetic link between obesity and pigmentation in both animal models and humans. Our study investigated the individual and joint associations between obesity-related single nucleotide polymorphisms (SNPs) and both human pigmentation and risk of melanoma. Eight obesity-related SNPs in the FTO, MAP2K5, NEGR1, FLJ35779, ETV5, CADM2, and NUDT3 genes were nominally significantly associated with hair color among 5,876 individuals of European ancestry. The genetic score combining 35 independent obesity-risk loci was significantly associated with darker hair color (beta-coefficient per ten alleles = 0.12, P value = 4 × 10?5). However, single SNPs or genetic scores showed non-significant association with tanning ability. We further examined the SNPs at the FTO locus for their associations with pigmentation and risk of melanoma. Among the 783 SNPs in the FTO gene with imputation R 2 quality metric >0.8 using the 1,000 genome data set, ten and three independent SNPs were significantly associated with hair color and tanning ability respectively. Moreover, five independent FTO SNPs showed nominally significant association with risk of melanoma in 1,804 cases and 1,026 controls. But none of them was associated with obesity or in linkage disequilibrium with obesity-related variants. FTO locus may confer variation in human pigmentation and risk of melanoma, which may be independent of its effect on obesity.  相似文献   

20.
Although ultraviolet radiation (UV) exposure from indoor tanning has been linked to an increased risk of melanoma, the role of DNA repair genes in this process is unknown. We evaluated the association of 92 single nucleotide polymorphisms (SNPs) in 20 DNA repair genes with the risk of melanoma and indoor tanning among 929 patients with melanoma and 817 controls from the Minnesota Skin Health Study. Significant associations with melanoma risk were identified for SNPs in ERCC4, ERCC6, RFC1, XPC, MGMT, and FBRSL1 genes; with a cutoff of P < 0.05. ERCC6 and FBRSL1 gene variants and haplotypes interacted with indoor tanning. However, none of the 92 SNPs tested met the correction criteria for multiple comparisons. This study, based on an a priori interest in investigating the role of DNA repair capacity using variants in base excision and nucleotide excision repair, identified several genes that may play a role in resolving UV‐induced DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号