首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Minor histocompatibility Ag (mHAg) can be responsible for the development of graft vs host reaction (GVHR) after bone marrow transplantation. In a mouse model, B10.D2 donor immunization against Mls-1a prevents lethal GVHR developed by CD4+ T cells against DBA mHAg in irradiated (DBA/2 x B10.D2)F1 hosts. Such F1 hosts become 100% chimeric and show long term survival (LS mice). The cellular mechanisms underlying the tolerance in LS mice was investigated. It was found that a state of tolerance can be induced in thymectomized F1 hosts. Although spleen cells from LS mice are able to initiate lethal GVHR in third-party H-2k-incompatible hosts, no GVHR is observed in secondary hosts incompatible for specific DBA/2 mHAg. Mixed lymphocyte experiments in vitro confirm that T cells from LS mice are unresponsive toward specific DBA/2 mHAg, although they are able to proliferate in response to H-2 or Mls-1a Ag. The responsiveness to Mls-1a correlates with the presence of V beta 6+ cells in LS mice, probably derived from mature T cells present in the donor inoculum. The tolerance in LS mice is not due to the lack of DBA/2 mHAg presentation; instead, permanent presentation of Ag (Ag I and Ag II) previously described as being responsible for lethal GVHR is consistently observed. A significant protection against GVHR is obtained by transferring normal B10.D2 cells together with spleen cells from LS mice, clearly indicating the contribution of active suppression in the state of tolerance; this is further confirmed by in vitro results obtained in limiting dilution assays. It is concluded that tolerance in chimeric LS mice 1) is due to a peripheral (thymus-independent) mechanism; 2) is specific for mHAg; 3) correlates with unresponsiveness of the repertoire to host mHAg, without alteration of the repertoire for H-2 and Mls-1a Ag; and 4) is associated with an active suppression and with a permanent presentation of at least two mHAg responsible for GVHR mortality.  相似文献   

2.
Summary DBA/2 (H-2d) mice bearing a transplanted highly metastatic lymphoma (ESb) in a state of widely disseminated disease could be successfully treated by a combination of surgery (removal of the local tumour), irradiation (5 Gy) and adoptive immunotherapy. The immunotherapy was achieved by transfer of anti-ESb-immune spleen cells from B10.D2 mice, which express the same major histocompatibility complex (MHC) molecules as DBA/2. In contrast, anti-ESb-immune cells from MHC-disparate C57BL/6 mice did not confer protective immunity. The B10.D2 anti-ESb-immune T cells contain two types of cytolytic specificity as detected by limiting-dilution analysis: (1) clones with specificity for the ESb-tumour-associated transplantation antigen (TATA) (at low frequency), and (b) clones with specificity for minor DBA/2 histocompatibility (H) antigens (at high frequency). Immune B10.D2 cells raised against different tumour lines or against TATA ESb tumour variants did not confer the 100% protection seen with immune cells against ESb TATA+ cells. Finally we demonstrate that the allogeneic immune cells are more potent in terms of protective immunity than corresponding syngeneic immune cells. The data suggest that the strong graft-versus-leukemia effect with immune T cells from allogeneic MHC-identical but not from MHC-disparate mice was due to T cells with MHC-restricted specificity for an ESb-associated TATA. A graft-versus-host reactivity that developed much later and could not be prevented was most likely due to T cells sensitized against normal minor H antigens of the host. Our results are of potential relevance for allogeneic bone marrow transplantation and adoptive immunotherapy protocols.  相似文献   

3.
We have studied the influence of DBA/2 non-H-2 antigens on the lethal graft-versus-host reaction (GVHR) developed across an H-2 barrier. (DBA/2 x B10.D2)F1 x B10.D2 (H-2 d) backcross (BC) mice were typed for their allelic constitution at nine genetically independent chromosome markers and used as individual cell donors simultaneously for two to three (DBA/2 X B10.D2)F1 recipients incompatible for DBA/2 non-H-2 antigens alone and two to three (DBA/2 x B10.BR)F1 recipients incompatible for DBA/2 non-H-2 antigens and H-2k. The results showed that, when compared with that developed in a control group incompatible for H-2 kalone [B10.D2(B10.D2xB10.BR)F1], the GVHR mortality seen in the presence of an additional incompatibility for DBA/2 non-H-2 antigens [(DBA/2 X B10.BR)F1recipients] is significantly delayed but only in female mice. An analysis of individual BC donors indicated that this protective effect of DBA/2 non-H-2 antigens correlates with incompatibility for gene(s) linked to the Pgm-1 chromosome marker. In contrast, incompatibility for gene(s) linked to Mod-1 and Es-3 markers accelerates GVHR mortality, but only in male mice. Finally, the results obtained with (DBA/2 x B10.D2)F1 and (DBA/2 x B10.BR)F1 recipients were compared; they showed that the intensity of the GVHR developed by cells from individual BC donors against a given set of DBA/2 non-H-2 antigens correlates well with that developed by the same BC donor against the same set of non-H-2 antigens plus H-2k. We conclude that certain non-H-2 genes (and antigens) can modulate the intensity of the GVHR developed across an H-2 barrier. The number of such genes is probably great; their effects are strong and complex, and can be sex-dependent.  相似文献   

4.
BALB/c mice develop cytotoxic lymphocytes as well as produce specific antibodies against the minor histocompatibility antigens when injected with DBA/2 P815 cells. P815 cells grown in BALB/c mice have IgG antibodies on their surface as demonstrated by the binding of 125I-labeled goat anti-mouse IgG and by complement-dependent cytotoxicity. Serum from BALB/c mice hyperimmunized with P815 cells blocked lymphocyte-mediated cytotoxicity by BALB/c immune peritoneal exudate cells. This blocking activity was removed by absorbing hyperimmune serum with DBA/2 spleen cells or P815 cells. This result suggests that specific antibodies were generated against the minor histocompatibility differences between BALB/c and DBA/2 mice. The experimental procedures described may be very useful in demonstrating minute quantities of antibody against minor histocompatibility antigens on tumor cells.  相似文献   

5.
Two types of biochemically defined class I major histocompatibility complex (MHC) antigens are found in the rat, RTLA antigens that are ubiquitously expressed and RTLC antigens which so far are detectable only on certain cell types, notably B and T lymphocytes. It is shown that the cytotoxic T lymphocyte response to minor H antigens of the LEW strain, including the H-Y antigen, and to TNP-modified syngeneic lymphoid cells is restricted by RTLA but not RTLC gene products. This conclusion is based on bulk culture assays including cold target inhibition tests and limiting dilution experiments using recombinants between the RT1 a and RT1 u haplotypes. The possibility that class I MHC antigens exist which have no major restriction function is discussed.  相似文献   

6.
We have studied the association of Ly phenotype with function and specificity for major histocompatibility complex (MHC) products by examining the properties of 21 T-cell clones derived from B10 anti-B 10.D2 and B10.A anti-B10.D2 mixed lymphocyte cultures (MLC). T cells were selected after MLC solely on the basis of Ly phenotype, cloned by limiting dilution, and tested for stability of Ly phenotype, function and specificity for class I or class II MHC products. Sixteen Ly-1+2 and five Ly-12+ T-cell clones were tested. The clones selected for the Ly-1 +2 phenotype maintained this phenotype, expressed helper but not lytic function, and recognized class II MHC products (I-Ad or I-Ed). All Ly-12 clones maintained this phenotype, possessed cytolytic but not helper activity, and recognized class I MHC products (Dd and Ld). Our data therefore confirm at the clonal level the original observations of a remarkably consistent correlation between Ly markers, MHC specificity, and. function. They suggest that the expression of Ly antigens on T-cell clones forms part of a genetic program for each of these specialized cells that also determines their function and MHC specificity.Abbreviations used in this paper MHC major histocompatibility complex - MLC mixed lymphocyte culture - TCGF T cell growth factor (Interleukin-2) - Con A Concanavalin A - DME Dulbecco's modified Eagle's medium - PHA phytohaemagglutinin - LPS lipopolysaccharide - TRF-C T cell replacing factor required for induction of cytolytic cells from thymocytes - PBS phosphate-buffered saline (pH 7.4)  相似文献   

7.
To test whether M1s determinants, like other non-MHC or nominal antigens, are recognized by T-cells in association with H-2 determinants, the in vitro proliferative responses of T-cell lines and clones were studied. Lines and clones were prepared by soft agar cloning (B10.BR x BALB/c)F1 (H-2k/H-2d, M1sb/M1sb) T-cells responding in a primary MLR to AKD2F1 (H-2k/H-2d, M1sa/M1sa) stimulator cells. All the T-cell clones obtained could respond equally well in a proliferative assay to the Mlsa determinant in association with the H-2 haplotype of either parent, i. e., DBA/2 (H-2d, M1sa), and AKR (H-2k, M1sa) both stimulated equally well. When the T-cell lines and clones were screened against stimulators from recombinant inbred (RI) strains, it became apparent that strains exhibiting the H-2b, M1sa genotype stimulated poorly or not at all. This shows that the T-cell response to M1sa involves MHC recognition, and raises the possibility that the response to M1sa can involve recognition of H-2 specificities shared between the H-2 k and H-2 d haplotypes.Abbreviations used in this paper MHC major histocompatibility complex - MLC mixed lymphocyte culture - IL-2 interleukin 2 - Con A concanavalin A - RI recombinant inbred Howard Hughes Medical Institute  相似文献   

8.
After (semi)allogeneic transplantation of lymphoid cells into lethally irradiated mice, the development of anti-host directed T effector cells can be demonstrated by means of a simple delayed-type hypersensitivity (DTH) assay. Using this assay we have shown that in H-2 compatible combinations Mls locus antigens can induce the generation of such T effector cells during a graft-versus-host (GvH) reaction. Other non-H-2 alloantigens are probably of minor importance. The capacity of Mls locus antigens to induce distinct anti-host DTH reactivity correlated with the capacity to induce a one-way mixed lymphocyte culture (MLC) response. Mlsa and Mlsc locus antigens initiated a positive MLC response as well as distinct GvH-related DTH reactivity. On the other hand, in the combination DBA/2 versus (BALB/c × DBA/2) F1, the Mlsb locus antigen was not able to initiate in vitro proliferation, a lack of response which coincided with a marginal and short-lasting GvH-related DTH reactivity. In contrast, the host-versus-graft (HvG) DTH reaction of BALB/c and DBA/2 mice to subcutaneously injected (BALB/c × DBA/2) F1 spleen cells was equally strong. Here antigens other than those coded for by the Mls locus were mainly responsible for the antigraft DTH response. These results suggest that T effector cells generated in GvH and HvG reactions are specific for largely different sets of minor histocompatibility antigens, with a selective stimulation by Mls locus antigens under GvH conditions.  相似文献   

9.
In the mouse sytem, specific determinants other than major histocompatibility complex (MHC) gene products are capable of inducing strong primary proliferative responses in naive T cells. These determinants are encoded by at least two gene loci designated as minor lymphocyte stimulatory (Mls) loci. In order to elucidate the biological role of the Mls system, an effort has been initiated to clarify the fundamental immunogenetic characteristics of the Mls system. In this report, we describe the unexpected finding that Mls c determinants are expressed on splenocytes of strains including those which have been used as prototypic examples of three other Mls types: Mls a (DBA/2, DBA/1), Mls b , (BALB/c), and Mls x (PL/J). The expression of Mls c by these strains was demonstrated both by the response patterns of unprimed T cells from MHC-identical inbred or F1 hybrid strains and by the responses of a panel of Mls-specific T-cell clones. The experimental results reported here also suggest that the expression of Mls determinants may be influenced by multiple other genes, including MHC-linked genes.Abbreviations used in this paper MHC major histocompatibility complex - MLR mixed lymphocyte reaction - Mls minor lymphocyte stimulating locus antigen - MMC mitomycin C - NNT nylon wool nonadherent T cells  相似文献   

10.
Neonatal tolerance inducibility of self-major histocompatibility complex (MHC)-class II-associated antigens was compared with that of allo-class II antigens. BALB/c (H-2d, Mlsb) mice, less than 24 hr after birth, were intravenously injected with bone marrow cells of either (BALB/c X DBA/2)F1 (H-2d, Mlsb/a, semiallogeneic at the Mls locus) or (BALB/c X B10.BR)F1 (H-2d/k, Mlsb; semiallogeneic at the MHC), as antigens. The mice were tested for in vivo immune activity of class II-reactive T cells by means of the popliteal lymph node-swelling assay. They developed tolerance, irrespective of type of antigens, showing profoundly suppressed host-versus-graft reaction, and those tolerized to the allo-MHC antigens accepted skin grafts of the corresponding allogeneic mice. In the thymus and spleen of the Mls-tolerant mice, antigen-specific class II-reactive T-cell activity was completely abolished, without the apparent involvement of suppressor cells. In contrast, the activity in allo-MHC-tolerant mice was not reduced in either thymus or peripheral lymphoid organs, suggesting that systemic hyporesponsiveness is attributable to reversible suppression of immune competent cells. The resistance for cell-level tolerance induction to allo-class II antigens may not be ascribed to the active participation of allo-MHC antigens in prevention of or in escape from tolerance induction or both, since an injection of bone marrow cells of both Mls and H-2-semiallogeneic (DBA/2 X B10.BR)F1 (H-2d/k, Mlsa/b) mice could induce tolerance to Mlsa-H-2d antigens in newborn thymus cells.  相似文献   

11.
《Cellular immunology》1986,99(1):182-195
We evaluated the role of molecules of the major histocompatibility complex (MHC) involved in the cellular interactions of two T-cell clones by testing the effect of monoclonal antibodies on the responses of the clones in vitro. The two T-cell clones used in the study are specific for minor histocompatibility antigens and restricted to the H-2Kk. In the absence of exogenous IL-2 the clones require the presence of Ia+, Thy-1 accessory cells and of Thy-1+, Lyt-1+2 cells in the irradiated spleen cell suspension used as stimulator. It is also necessary that both the accessory cells and the T cells in the stimulator cell populations are recognized specifically by the clones. Monoclonal antibodies specific for the H-2K product inhibited the lytic effector function of the cytolytic clone. These antibodies when added to cultures of stimulator cells and clones inhibited also the proliferation of this clone and of a nonlytic clone. When antigen recognition was measured by the increase in sensitivity of the clones to IL-2 while confronted with uv-irradiated stimulator cells, both clones were blocked efficiently by anti-H-2K antibodies. Thus, these results suggest that the interaction of monoclonal antibodies with the restricting H-2K molecule is sufficient to block the recognition signal, a prerequisite for proliferation. In contrast, monoclonal antibodies specific for AαAβ and/or EαEβ had no effect on cytolysis or on restricted recognition. However, they inhibited the proliferative responses as efficiently as the H-2K specific antibodies. Inhibition by class II-specific antibodies was not abolished when stimulator cell populations were depleted of Lyt-2+ cells. The blocking effect, however, was reversed by the addition of IL-2. No inhibition was obtained with antibody specific for EαEβ when B10.A(4R) spleen cells, which do not express EαEβ, or when B10.A(4R) accessory cells, which were reconstituted with (BALB/c X B10.A(4R)) F1 T cells, were used as stimulators. Stimulator cells heterozygous for H-2 could be inhibited by antibodies to the parental haplotype not encoded in the clones (H-2Kd). These and previous results suggest that H-2K-restricted minor histocompatibility antigen-specific recognition transmits an activating signal to the clones and to the stimulator cells. The clones probably are induced to express more IL-2 receptors. The stimulator T cells seem to interact through AαAβ and EαEβ molecules with syngeneic accessory cells. This interaction results in IL-2 production by the stimulator T cells and thus in the proliferation of the clones.  相似文献   

12.
The molecular structure of antigens recognized exclusively by T cells, such as minor histocompatibility antigens and some antigens that provoke autoimmune responses, has proved difficult to determine. Recently, several antigens induced on tumor cells by mutagen treatment have been cloned by transfection of genomic DNA libraries into P1.HTR cells, screening for antigen expression using T-cell clones, and subsequent recovery of the integrated DNA by cosmid rescue. We have modified this techniques and have stably transfected P1. HTR cell lines with polyoma T antigen, which allows episomal replication of the shuttle vector, pCDM8. Using pCDM8-CAT constructs, we have determined the frequency of transfection and plasmid copies taken up per cell under optimal transfection conditions. Using a pCDM8 construct which expresses the tumor-specific antigen, P91A (pCDM8-tum-), that is recognized by a T-cell clone, we have found that cells transfected with this antigen can be recognized by the T-cell clone when they are present at only 1%–3% of a mixed population. Progeny of a single cell transfected with pCDM8-tum-: pCDM8-CAT at proportions of 1:10, 1:25, and 1:50 are recognized by the T-cell clone. Furthermore, Hirt extracted plasmid DNA from transfectants expressing the tum- antigen can be amplified in bacteria, transfected back into P1.HTR recipients, and recognized by the T-cell clone. This approach should enable reasonably rapid screening of cDNA libraries for even relatively low abundance messages encoding, for example, minor histocompatibility and allonatigens, and allow their subsequent cloning. Address correspondence and offprint requests to: D. M. Scott.  相似文献   

13.
Immunocompetent B10.D2 (H-2d) mice are able to reject the highly malignant lymphoma ESb of DBA/2 (H-2d) origin very effectively. Seven days after intravenous injection of the ESb tumor cells, B10.D2 mice developed a strong tumor-rejection response which was associated with the generation of anti-tumor T cells in their spleens with direct cytotoxic activity. Most of the cytotoxic potential was directed against the minor histocompatibility differences as demonstrated by the lysis of unrelated DBA/2 derived Eb tumor cells and normal DBA/2 but no B10.D2 derived ConA lymphoblasts. A previously performed clonal analysis, however, revealed a minority population of CTL clones which specifically recognized the ESb specific transplantation antigen (ESb-TATA). When transferred systemically into DBA/2 mice, the B10.D2 anti-ESb immune spleen cells could delay the outgrowth of s.c. transplanted ESb tumor cells. When the ESb tumor cells were experimentally distributed in a s.c. implanted sponge-matrix, the i.v. injected B10.D2 immune cells could confer complete protective immunity against the metastatic tumor, provided the recipients were pre-treated with 5 Gy to allow a better take of the allogeneic cells. The distribution of intravenously injected B 10D2 donor spleen cells was assessed in the recipients up to 50 days by cytotoxicity testing and assaying for the expression of the 2 microglobulin allelic form b ( 2mb). These tests revealed a high propensity of donor cells to populate the spleen and lymph nodes of the DBA/2 recipients. Again this was particularly marked in sublethally irradiated mice where a long-lasting lymphoid chimerism was established.  相似文献   

14.
Clones of lymphocytes, primed in vitro to HLA-DR1; Dw1, were tested for allospecific proliferation on a panel of thirty-one HLA-phenotyped stimulating cells. No clone was restimulated exclusively by cells sharing the DR1; Dw1 priming antigens and most clones were restimulated by subsets of cells bearing DR1; Dw1. Generally, positive responses were at least 20-fold higher than autologous negative controls. Peak proliferative responses occurred around 72 h and varied, depending on the stimulating cell as well as the responding clone. Selected clones were induced to proliferate only by cells incapable of forming rosettes with sheep erythrocytes. Specific proliferation by TLCs was blocked by monoclonal DR-specific antibodies, but not by monoclonal anti-Thy 1.2. Genetic studies demonstrated that TLCs detected some cell-surface determinants that are encoded by genes in linkage disequilibrium with HLA and others that may not be linked to the human major histocompatibility complex.Abbreviations used in this paper 3HTdR tritiated methylthymidine - HTC homozygous typing cell - MHC major histocompatibility complex - HLA human MHC - MLC mixed leukocyte culture - PBL peripheral blood lymphocytes - PLT primed lymphocyte typing - TCGF T-cell growth factor - IL-2 interleukin 2 - TLC T-lymphocyte close  相似文献   

15.
Murine T-cell clones specific for chicken erythrocyte alloantigens   总被引:8,自引:0,他引:8  
We have established murine T-cell clones which respond to allotypic and species-specific determinants found on chicken erythrocytes (cRBC). Their relative antigen specificities were determined by assessing lymphokine production and proliferation in response to syngeneic spleen cells and cRBC obtained from chickens homozygous for major histocompatibility complex (MHC) antigens. The specificity pattern suggested that the T-cell clones recognized a more restricted set of cRBC MHC-associated allodeterminants than do antibody-producing cells. The antigen-specific responses required antigen processing, and were MHC restricted and antigen dose dependent. Approximately 20% of T-cell clones from appropriate strains of mice were also Mls alloreactive. This second reactivity showed no correlation with nominal cRBC specificity. The induction-specific lymphokine activities of T-cell growth factor, mast cell growth factor, and Ia induction factor were identified as interleukin 2 (IL-2), interleukin 3 (IL-3), and interferon-gamma respectively.  相似文献   

16.
Nonlymphoid, stromal cells in the mouse thymus are believed to be important in T cell maturation and have been proposed to play a central role in the acquisition of major histocompatibility complex (MHC) restriction and self-tolerance by maturing thymocytes. Both cortical and medullary epithelial cells in the thymus express high levels of class II (A) major histocompatibility antigens (MHC Ags). We show here that a specific subset of these A epithelial cells express a transformation-associated antigen (6C3Ag) found previously on the surfaces of Abelson murine leukemia virus-transformed pre-B cells and on those bone marrow-derived stromal cell clones which support normal and preneoplastic pre-B cell proliferation. Among solid lymphoid organs, only the thymus contains 6C3Ag1 cells and within the thymus, this antigen is found exclusively on A epithelial cells in cortical regions. It is striking that the expression of the 6C3Ag on thymic epithelium is developmentally regulated, suggesting a role for this lymphostromal antigen in the maturation of the thymic microenvironment.  相似文献   

17.
The recognition of antigen by T lymphocytes (T cells) is restricted by Class I or Class II major histocompatibility complex (MHC) gene products, the phenomenon called “MHC restriction.” MHC restriction is speculated to be one of the major elements for the association of disease susceptibility to MHC haplotypes. Clones of T cells have been shown to be powerful tools for the analysis of such restriction specificity. In this report, I describe unique mixed-isotype Aβd/Eαdrestriction molecules detected by T-cell clones in (B6Eαd× BALB/c)F1 transgenic mice. The restriction specificity of these clones was confirmed by anti-Class II mAb blocking experiments. The ability of spleen cells from Aβdand Eαddouble transgenic B6 (B6Aβdd) mice that express Aβd/Eαdmolecules to present KLH to these clones supported the existence of such unique specificity. I also describe autoreactive as well as KLH-reactive T-cell clones restricted by mixed-haplotype Aβz/AαdClass II molecules derived from (NZB × NZW)F1 (B/WF1) mice. The restriction specificity was demonstrated by mAb blocking experiments and by experiments using Class II gene-transfected antigen-presenting cells. It is possible that such unique mixed-isotype and mixed-haplotype Class II molecules are critically involved in autoimmunity. In addition, the detailed methodology for establishing T-cell clones currently employed in my laboratory is described.  相似文献   

18.
To study the interactions between T cells and class I MHC products, we developed in vitro a T-cell line reactive to H-2Kb stimulating cells and derived T-cell clones from it. Although the T-cell line could proliferate in the absence of exogeneous T-cell growth factors when stimulated with H-2Kb spleen cells, each of the derived T-cell clones required both H-2Kb stimulating cells and an external source of T-cell growth factor for its propagation. Each of the T-cell clones was also cytolysic for H-2Kb target cells. Such T-cell clones allowed the comparison of the antigenic requirements for proliferation and cytolysis. By using H-2K b mutant mice, we found that while the original anti-H-2Kb T-cell line reacted with each of the six mutants tested, the individual T-cell clones could be distinguished in terms of their reactivity pattern. Similar fine specificity patterns were found when H-2K b mutant cells were used as stimulating or target cells for any given T-cell clone. Each of the three monoclonal H-2Kb-specific antibodies reacting with different epitopes of the H-2Kb molecule totally inhibited H-2Kb-induced proliferation and lysis by the T-cell clones. Further blocking studies involved use of Fab antibody fragments and definition of their reactivity on cells from the H-2K b mutants. We concluded that: (1) blocking with a monoclonal antibody does not prove identity of alloantigens recognized by the T-cells and the antibody; (2) a monoclonal antibody could either block or not block H-2Kb-CTL interactions depending on structural variations of the H-2Kb molecule not affecting the CTL-H-2Kb functional interaction; (3) blocking one type of H-2Kb-T-cell interaction (induction of proliferation) always affects the other type (cytolysis).Abbreviations used in this paper MHC major histocompatibility complex - CTL cytotoxic - T lymphocytes - Th T helper cells - PMA 4-phorbol 12-myristate 13-acetate - Con A Concanavalin A - LPS E. coli lipopolysaccharide - SCA Con A stimulated rat spleen-cells supernatant - SBD B6 anti-DBA/2 mixed lymphocyte culture supernatant - TCGF T-cell growth factors - IL-2 interleukin 2 - mAb monoclonal antibody - FCS fetal calf serum - PBS phosphate buffered saline - C complement  相似文献   

19.
CBA/J mice were immunized with B2/B2 chicken RBC's (theB locus is the major histocompatibility complex (MHC) of the chicken). Spleen cells from these mice gave a much higher plaque-forming cell response when tested with RBC's bearing B2 alloantigens, than with RBC's bearing any other MHC alloantigens. Similarly, immunization with chicken RBC's of other genotypes also produced responses that were highest when tested on the genotype used for immunization. Spleen cells from mice immunized 3 days previously with B2/B2 RBC's were fused with mouse myeloma cells and hybrid clones which secreted anti-B2 antibodies were selected. These monoclonal antibodies could be divided into three groups: (1) those which react with all genotypes of RBC's (panreactive); (2) those which react with only certain genotypes of RBC's and detect “public” MHC antigens; and (3) those which react with only B2/B2 RBC's and detect “private” MHC antigens. Monoclonal antibodies which detect a private B2 alloantigen were shown to be excellent typing reagents, as all birds of an outbred population which possessed the B2 allele were easily detected using a simple one-step direct agglutination assay. No “false positives” were seen. The high and preferential response of the mouse to chicken MHC alloantigens suggested that mice might possess preexisting immunity to these antigens. In agreement with this hypothesis, normal mouse serum was found to have high titres of “natural” antibody against chicken MHC antigens.  相似文献   

20.
To study the fine specificity of the HLA-D region, a panel of human T-lymphocyte clones (TLCs) was generated against alloantigens associated with HLA-DR1 through DRw8. HLA-DR-homozygous peripheral blood lymphocytes (PBLs) were stimulated with DR-heterozygous PBLs in primary mixed lymphocyte cultures for 4 days. Blasts were cloned by limiting dilution at 0.3 cells/well in the presence of 20% T-cell growth factor and irradiated stimulator cells. Viable clones were subsequently tested in proliferation assays against the original stimulator and a limited panel of stimulators bearing relevant DR specificities. Initial primings produced approximately 800 clones; some recognized DR-associated antigens, 70 recognized only their original stimulator, and approximately 50% were nonresponsive. Analysis on extended stimulator panels revealed alloantigenic complexity within similar DR-associated antigens as recognized by TLCs. The data are consistent with evidence that extreme heterogeneity exists within the HLA-D region.Abbreviations used in this paper cpm counts per minute - DNV double normalized value - EBV Epstein-Barr virus - FCS fetal calf serum - HLA human major histocompatibility complex - HTC homozygous typing cell - LCL lymphoblastoid cell line - MHC major histocompatibility complex - MLC mixed lymphocyte culture - PLT primed lymphocyte typing - TCGF T-cell growth factor - TLC T-lymphocyte clone - T-max maximized T-test analysis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号